BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28979834)

  • 1. Microparticle-enhanced polygalacturonase production by wild type
    Karahalil E; Demirel F; Evcan E; Germeç M; Tari C; Turhan I
    3 Biotech; 2017 Dec; 7(6):361. PubMed ID: 28979834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microparticle-enhanced Aspergillus ficuum phytase production and evaluation of fungal morphology in submerged fermentation.
    Coban HB; Demirci A; Turhan I
    Bioprocess Biosyst Eng; 2015 Jun; 38(6):1075-80. PubMed ID: 25555703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of orange peel, a food industrial waste, in the production of exo-polygalacturonase by pellet forming Aspergillus sojae.
    Buyukkileci AO; Lahore MF; Tari C
    Bioprocess Biosyst Eng; 2015 Apr; 38(4):749-60. PubMed ID: 25352336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of physicochemical parameters on the polygalacturonase of an Aspergillus sojae mutant using wheat bran, an agro-industrial waste, via solid-state fermentation.
    Demir H; Tari C
    J Sci Food Agric; 2016 Aug; 96(10):3575-82. PubMed ID: 26604188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen transfer coefficient and the kinetic parameters of exo-polygalacturonase production by Aspergillus flavipes FP-500 in shake flasks and bioreactor.
    Gómez Sánchez CE; Martínez-Trujillo A; Aguilar Osorio G
    Lett Appl Microbiol; 2012 Dec; 55(6):444-52. PubMed ID: 25999036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling filamentous fungi morphology with microparticles to enhanced β-mannanase production.
    Yatmaz E; Karahalil E; Germec M; Ilgin M; Turhan İ
    Bioprocess Biosyst Eng; 2016 Sep; 39(9):1391-9. PubMed ID: 27129457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of various process parameters on morphology, rheology, and polygalacturonase production by Aspergillus sojae in a batch bioreactor.
    Oncu S; Tari C; Unluturk S
    Biotechnol Prog; 2007; 23(4):836-45. PubMed ID: 17585778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology engineering of basidiomycetes for improved laccase biosynthesis.
    Antecka A; Blatkiewicz M; Bizukojć M; Ledakowicz S
    Biotechnol Lett; 2016 Apr; 38(4):667-72. PubMed ID: 26699894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of different fermentation strategies on β-mannanase production in fed-batch bioreactor system.
    Germec M; Yatmaz E; Karahalil E; Turhan İ
    3 Biotech; 2017 May; 7(1):77. PubMed ID: 28455720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of polygalacturonase enzyme activity and biomass production by Aspergillus sojae ATCC 20235.
    Tokatli F; Tari C; Unluturk SM; Gogus Baysal N
    J Ind Microbiol Biotechnol; 2009 Sep; 36(9):1139-48. PubMed ID: 19479289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved enzyme production by bio-pellets of Aspergillus niger: targeted morphology engineering using titanate microparticles.
    Driouch H; Hänsch R; Wucherpfennig T; Krull R; Wittmann C
    Biotechnol Bioeng; 2012 Feb; 109(2):462-71. PubMed ID: 21887774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial strain improvement for enhanced polygalacturonase production by Aspergillus sojae.
    Heerd D; Tari C; Fernández-Lahore M
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7471-81. PubMed ID: 24695827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of agro-industrial wastes, their state, and mixing ratio for maximum polygalacturonase and biomass production in submerged fermentation.
    Göğüş N; Evcan E; Tarı C; Cavalitto SF
    Environ Technol; 2015; 36(20):2657-67. PubMed ID: 25946481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microparticle-enhanced
    Du L; Gao B; Liang J; Wang Y; Xiao Y; Zhu D
    3 Biotech; 2020 Mar; 10(3):100. PubMed ID: 32099741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of schizophyllan production in Schizophyllum commune using microparticles in medium.
    Alizadeh V; Shojaosadati SA; Zamir SM
    Bioprocess Biosyst Eng; 2021 Feb; 44(2):317-328. PubMed ID: 32955618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved biomass and protein production in solid-state cultures of an Aspergillus sojae strain harboring the Vitreoscilla hemoglobin.
    Mora-Lugo R; Madrigal M; Yelemane V; Fernandez-Lahore M
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9699-708. PubMed ID: 26224427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient polygalacturonase production from agricultural and agro-industrial residues by solid-state culture of Aspergillus sojae under optimized conditions.
    Heerd D; Diercks-Horn S; Fernández-Lahore M
    Springerplus; 2014; 3():742. PubMed ID: 25674471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological evolution of various fungal species in the presence and absence of aluminum oxide microparticles: Comparative and quantitative insights into microparticle-enhanced cultivation (MPEC).
    Kowalska A; Boruta T; Bizukojć M
    Microbiologyopen; 2018 Oct; 7(5):e00603. PubMed ID: 29504287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of polygalacturonases by Aspergillus section Nigri strains in a fixed bed reactor.
    Maciel M; Ottoni C; Santos C; Lima N; Moreira K; Souza-Motta C
    Molecules; 2013 Jan; 18(2):1660-71. PubMed ID: 23358324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth control agent for filamentous fungi: FDM based 3D printed cubes for suspended Aspergillus sojae fermentation.
    Yatmaz E
    Enzyme Microb Technol; 2021 Oct; 150():109867. PubMed ID: 34489026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.