These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28980095)

  • 1. Origin of Oligodendrocytes in the Vertebrate Optic Nerve: A Review.
    Ono K; Hirahara Y; Gotoh H; Nomura T; Takebayashi H; Yamada H; Ikenaka K
    Neurochem Res; 2018 Jan; 43(1):3-11. PubMed ID: 28980095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligodendrocyte precursor cells in the mouse optic nerve originate in the preoptic area.
    Ono K; Yoshii K; Tominaga H; Gotoh H; Nomura T; Takebayashi H; Ikenaka K
    Brain Struct Funct; 2017 Jul; 222(5):2441-2448. PubMed ID: 28293728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term culture of purified postnatal oligodendrocyte precursor cells. Evidence for an intrinsic maturation program that plays out over months.
    Tang DG; Tokumoto YM; Raff MC
    J Cell Biol; 2000 Mar; 148(5):971-84. PubMed ID: 10704447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specification of optic nerve oligodendrocyte precursors by retinal ganglion cell axons.
    Gao L; Miller RH
    J Neurosci; 2006 Jul; 26(29):7619-28. PubMed ID: 16855089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors.
    Merchán P; Bribián A; Sánchez-Camacho C; Lezameta M; Bovolenta P; de Castro F
    Mol Cell Neurosci; 2007 Nov; 36(3):355-68. PubMed ID: 17826177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, Expansion, and Maturation of Oligodendrocyte Lineage Cells Obtained from Rat Neonatal Brain and Optic Nerve.
    Sánchez-Gómez MV; Serrano MP; Alberdi E; Pérez-Cerdá F; Matute C
    Methods Mol Biol; 2018; 1791():95-113. PubMed ID: 30006704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligodendrocyte precursor cells from different brain regions express divergent properties consistent with the differing time courses of myelination in these regions.
    Power J; Mayer-Pröschel M; Smith J; Noble M
    Dev Biol; 2002 May; 245(2):362-75. PubMed ID: 11977987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone morphogenetic protein signaling and olig1/2 interact to regulate the differentiation and maturation of adult oligodendrocyte precursor cells.
    Cheng X; Wang Y; He Q; Qiu M; Whittemore SR; Cao Q
    Stem Cells; 2007 Dec; 25(12):3204-14. PubMed ID: 17872503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation and characterization of oligodendrocytes from lineage-selectable embryonic stem cells in vitro.
    Billon N; Jolicoeur C; Raff M
    Methods Mol Biol; 2006; 330():15-32. PubMed ID: 16846014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Division of astroblasts and oligodendroblasts in postnatal rodent brain: evidence for separate astrocyte and oligodendrocyte lineages.
    Skoff RP; Knapp PE
    Glia; 1991; 4(2):165-74. PubMed ID: 1827776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuregulin-1/ErbB4 signaling controls the migration of oligodendrocyte precursor cells during development.
    Ortega MC; Bribián A; Peregrín S; Gil MT; Marín O; de Castro F
    Exp Neurol; 2012 Jun; 235(2):610-20. PubMed ID: 22504067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that perinatal and adult NG2-glia are not conventional oligodendrocyte progenitors and do not depend on axons for their survival.
    Greenwood K; Butt AM
    Mol Cell Neurosci; 2003 Aug; 23(4):544-58. PubMed ID: 12932436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-related differences in oligodendrogenesis across the dorsal-ventral axis of the mouse hippocampus.
    Yamada J; Jinno S
    Hippocampus; 2014 Aug; 24(8):1017-29. PubMed ID: 24753086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olig2 overexpression accelerates the differentiation of mouse embryonic stem cells into oligodendrocyte progenitor cells in vitro.
    Yao R; Wang B; Ren C; Qu X; Luo M; Zhang Q; Wang H; Dong F; Wu X; Yang L; Yu H
    Dev Growth Differ; 2014 Sep; 56(7):511-7. PubMed ID: 25200136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox state as a central modulator of precursor cell function.
    Noble M; Smith J; Power J; Mayer-Pröschel M
    Ann N Y Acad Sci; 2003 Jun; 991():251-71. PubMed ID: 12846992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination.
    Dugas JC; Cuellar TL; Scholze A; Ason B; Ibrahim A; Emery B; Zamanian JL; Foo LC; McManus MT; Barres BA
    Neuron; 2010 Mar; 65(5):597-611. PubMed ID: 20223197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chd7 Collaborates with Sox2 to Regulate Activation of Oligodendrocyte Precursor Cells after Spinal Cord Injury.
    Doi T; Ogata T; Yamauchi J; Sawada Y; Tanaka S; Nagao M
    J Neurosci; 2017 Oct; 37(43):10290-10309. PubMed ID: 28931573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-WASP regulates extension of filopodia and processes by oligodendrocyte progenitors, oligodendrocytes, and Schwann cells-implications for axon ensheathment at myelination.
    Bacon C; Lakics V; Machesky L; Rumsby M
    Glia; 2007 Jun; 55(8):844-58. PubMed ID: 17405146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a second wave of oligodendrogenesis in the postnatal cerebral cortex of the mouse.
    Ivanova A; Nakahira E; Kagawa T; Oba A; Wada T; Takebayashi H; Spassky N; Levine J; Zalc B; Ikenaka K
    J Neurosci Res; 2003 Sep; 73(5):581-92. PubMed ID: 12929126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons.
    Barres BA; Raff MC
    Nature; 1993 Jan; 361(6409):258-60. PubMed ID: 8093806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.