These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2898010)

  • 1. Aspartic acid aminotransferase activity is increased in actively spiking compared with non-spiking human epileptic cortex.
    Kish SJ; Dixon LM; Sherwin AL
    J Neurol Neurosurg Psychiatry; 1988 Apr; 51(4):552-6. PubMed ID: 2898010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitatory amino acids are elevated in human epileptic cerebral cortex.
    Sherwin A; Robitaille Y; Quesney F; Olivier A; Villemure J; Leblanc R; Feindel W; Andermann E; Gotman J; Andermann F
    Neurology; 1988 Jun; 38(6):920-3. PubMed ID: 3368074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid and catecholamine markers of metabolic abnormalities in human focal epilepsy.
    Sherwin AL; van Gelder NM
    Adv Neurol; 1986; 44():1011-32. PubMed ID: 2871718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased activity of choline acetyltransferase and acetylcholinesterase in actively epileptic human cerebral cortex.
    Kish SJ; Olivier A; Dubeau F; Robitaille Y; Sherwin AL
    Epilepsy Res; 1988; 2(4):227-31. PubMed ID: 3197693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of infrared laser irradiation on amino acid neurotransmitters in an epileptic animal model induced by pilocarpine.
    Radwan NM; El Hay Ahmed NA; Ibrahim KM; Khedr ME; Aziz MA; Khadrawy YA
    Photomed Laser Surg; 2009 Jun; 27(3):401-9. PubMed ID: 19025405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme changes in actively spiking areas of human epileptic cerebral cortex.
    Sherwin A; Quesney F; Gauthier S; Olivier A; Robitaille Y; McQuaid P; Harvey C; van Gelder N
    Neurology; 1984 Jul; 34(7):927-33. PubMed ID: 6146116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential glutamate dehydrogenase (GDH) activity profile in patients with temporal lobe epilepsy.
    Malthankar-Phatak GH; de Lanerolle N; Eid T; Spencer DD; Behar KL; Spencer SS; Kim JH; Lai JC
    Epilepsia; 2006 Aug; 47(8):1292-9. PubMed ID: 16922873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal nitric oxide synthase expression in resected epileptic dysplastic neocortex.
    González-Martínez JA; Möddel G; Ying Z; Prayson RA; Bingaman WE; Najm IM
    J Neurosurg; 2009 Feb; 110(2):343-9. PubMed ID: 19245288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pericyte degeneration and thickening of basement membranes of cerebral microvessels in complex partial seizures: electron microscopic study of surgically removed tissue.
    Liwnicz BH; Leach JL; Yeh HS; Privitera M
    Neurosurgery; 1990 Mar; 26(3):409-20. PubMed ID: 2320209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Sequential changes in content of excitatory amino acids in the epileptic focus during seizure].
    Nakase H; Tada T; Eguchi T; Hirabayashi H; Morimoto T; Sakaki T
    No To Shinkei; 1991 May; 43(5):451-4. PubMed ID: 1680359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased aspartic acid release from the iron-induced epileptogenic focus.
    Janjua NA; Mori A; Hiramatsu M
    Epilepsy Res; 1990 Aug; 6(3):215-20. PubMed ID: 1980245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histochemical localization of aspartate aminotransferase activity in the hippocampal formation and in peripheral ganglia of the rat with special reference to the glutamate transmitter metabolism.
    Schmidt W; Wolf G
    J Hirnforsch; 1984; 25(5):505-10. PubMed ID: 6150058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical markers of excitability in human neocortex.
    Sherwin AL; Vernet O; Dubeau F; Olivier A
    Can J Neurol Sci; 1991 Nov; 18(4 Suppl):640-4. PubMed ID: 1777885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.
    Nissen JD; Pajęcka K; Stridh MH; Skytt DM; Waagepetersen HS
    Glia; 2015 Dec; 63(12):2313-26. PubMed ID: 26221781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Relationship between anatomic lesions of the temporal lobe and temporal lobe epilepsy].
    Francione S; Munari C; Hoffmann D; Lo Russo G; Le Bas JF; Pasquier B; Benabid AL
    Chir Ital; 1996; 48(6):39-48. PubMed ID: 9377787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdialysis of the lateral and medial temporal lobe during temporal lobe epilepsy surgery.
    Thomas PM; Phillips JP; O'Connor WT
    Surg Neurol; 2005 Jan; 63(1):70-9; discussion 79. PubMed ID: 15639534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuron-glia relationships in human and experimental epilepsy: a biochemical point of view.
    Grisar TM
    Adv Neurol; 1986; 44():1045-73. PubMed ID: 2871719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of potassium and N-methyl-D-aspartate on the aspartate aminotransferase activity in cultured cerebellar granule cells.
    Morán J; Rivera-Gaxiola M
    J Neurosci Res; 1992 Oct; 33(2):239-47. PubMed ID: 1453488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism is normal in astrocytes in chronically epileptic rats: a (13)C NMR study of neuronal-glial interactions in a model of temporal lobe epilepsy.
    Melø TM; Nehlig A; Sonnewald U
    J Cereb Blood Flow Metab; 2005 Oct; 25(10):1254-64. PubMed ID: 15902201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors affecting spiking related to sleep and wake states in temporal lobe epilepsy (TLE).
    Clemens Z; Janszky J; Clemens B; Szucs A; Halász P
    Seizure; 2005 Jan; 14(1):52-7. PubMed ID: 15642501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.