These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 28980259)
1. Cross-Phenotype Association Analysis Using Summary Statistics from GWAS. Li X; Zhu X Methods Mol Biol; 2017; 1666():455-467. PubMed ID: 28980259 [TBL] [Abstract][Full Text] [Related]
2. Multivariate Analysis of Anthropometric Traits Using Summary Statistics of Genome-Wide Association Studies from GIANT Consortium. Park H; Li X; Song YE; He KY; Zhu X PLoS One; 2016; 11(10):e0163912. PubMed ID: 27701450 [TBL] [Abstract][Full Text] [Related]
3. Pleiotropy informed adaptive association test of multiple traits using genome-wide association study summary data. Masotti M; Guo B; Wu B Biometrics; 2019 Dec; 75(4):1076-1085. PubMed ID: 31021400 [TBL] [Abstract][Full Text] [Related]
4. Methods for meta-analysis of multiple traits using GWAS summary statistics. Ray D; Boehnke M Genet Epidemiol; 2018 Mar; 42(2):134-145. PubMed ID: 29226385 [TBL] [Abstract][Full Text] [Related]
5. Testing Genetic Pleiotropy with GWAS Summary Statistics for Marginal and Conditional Analyses. Deng Y; Pan W Genetics; 2017 Dec; 207(4):1285-1299. PubMed ID: 28971959 [TBL] [Abstract][Full Text] [Related]
6. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics. Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509 [TBL] [Abstract][Full Text] [Related]
7. SCOPA and META-SCOPA: software for the analysis and aggregation of genome-wide association studies of multiple correlated phenotypes. Mägi R; Suleimanov YV; Clarke GM; Kaakinen M; Fischer K; Prokopenko I; Morris AP BMC Bioinformatics; 2017 Jan; 18(1):25. PubMed ID: 28077070 [TBL] [Abstract][Full Text] [Related]
8. An iterative approach to detect pleiotropy and perform Mendelian Randomization analysis using GWAS summary statistics. Zhu X; Li X; Xu R; Wang T Bioinformatics; 2021 Jun; 37(10):1390-1400. PubMed ID: 33226062 [TBL] [Abstract][Full Text] [Related]
9. multi-GPA-Tree: Statistical approach for pleiotropy informed and functional annotation tree guided prioritization of GWAS results. Khatiwada A; Yilmaz AS; Wolf BJ; Pietrzak M; Chung D PLoS Comput Biol; 2023 Dec; 19(12):e1011686. PubMed ID: 38060592 [TBL] [Abstract][Full Text] [Related]
10. LPG: A four-group probabilistic approach to leveraging pleiotropy in genome-wide association studies. Yang Y; Dai M; Huang J; Lin X; Yang C; Chen M; Liu J BMC Genomics; 2018 Jun; 19(1):503. PubMed ID: 29954342 [TBL] [Abstract][Full Text] [Related]
11. LLR: a latent low-rank approach to colocalizing genetic risk variants in multiple GWAS. Liu J; Wan X; Wang C; Yang C; Zhou X; Yang C Bioinformatics; 2017 Dec; 33(24):3878-3886. PubMed ID: 28961754 [TBL] [Abstract][Full Text] [Related]
12. CPAG: software for leveraging pleiotropy in GWAS to reveal similarity between human traits links plasma fatty acids and intestinal inflammation. Wang L; Oehlers SH; Espenschied ST; Rawls JF; Tobin DM; Ko DC Genome Biol; 2015 Sep; 16(1):190. PubMed ID: 26374098 [TBL] [Abstract][Full Text] [Related]
13. PRIMe: a method for characterization and evaluation of pleiotropic regions from multiple genome-wide association studies. Huang J; Johnson AD; O'Donnell CJ Bioinformatics; 2011 May; 27(9):1201-6. PubMed ID: 21398673 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide large-scale multi-trait analysis characterizes global patterns of pleiotropy and unique trait-specific variants. Qi G; Chhetri SB; Ray D; Dutta D; Battle A; Bhattacharjee S; Chatterjee N Nat Commun; 2024 Aug; 15(1):6985. PubMed ID: 39143063 [TBL] [Abstract][Full Text] [Related]
15. An adaptive test based on principal components for detecting multiple phenotype associations using GWAS summary data. Wei Q; Chen L; Zhou Y; Wang H Genetica; 2023 Apr; 151(2):97-104. PubMed ID: 36656460 [TBL] [Abstract][Full Text] [Related]
16. Leveraging pleiotropy for joint analysis of genome-wide association studies with per trait interpretations. Taraszka K; Zaitlen N; Eskin E PLoS Genet; 2022 Nov; 18(11):e1010447. PubMed ID: 36342933 [TBL] [Abstract][Full Text] [Related]
17. Statistical power and utility of meta-analysis methods for cross-phenotype genome-wide association studies. Zhu Z; Anttila V; Smoller JW; Lee PH PLoS One; 2018; 13(3):e0193256. PubMed ID: 29494641 [TBL] [Abstract][Full Text] [Related]
18. Leveraging pleiotropy to discover and interpret GWAS results for sleep-associated traits. Chun S; Akle S; Teodosiadis A; Cade BE; Wang H; Sofer T; Evans DS; Stone KL; Gharib SA; Mukherjee S; Palmer LJ; Hillman D; Rotter JI; Hanis CL; Stamatoyannopoulos JA; Redline S; Cotsapas C; Sunyaev SR PLoS Genet; 2022 Dec; 18(12):e1010557. PubMed ID: 36574455 [TBL] [Abstract][Full Text] [Related]
19. PLEIO: a method to map and interpret pleiotropic loci with GWAS summary statistics. Lee CH; Shi H; Pasaniuc B; Eskin E; Han B Am J Hum Genet; 2021 Jan; 108(1):36-48. PubMed ID: 33352115 [TBL] [Abstract][Full Text] [Related]
20. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach. Guo B; Wu B Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]