BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 28980524)

  • 1. Structure of PINK1 and mechanisms of Parkinson's disease-associated mutations.
    Kumar A; Tamjar J; Waddell AD; Woodroof HI; Raimi OG; Shaw AM; Peggie M; Muqit MM; van Aalten DM
    Elife; 2017 Oct; 6():. PubMed ID: 28980524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PINK1 autophosphorylation is required for ubiquitin recognition.
    Rasool S; Soya N; Truong L; Croteau N; Lukacs GL; Trempe JF
    EMBO Rep; 2018 Apr; 19(4):. PubMed ID: 29475881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations.
    Woodroof HI; Pogson JH; Begley M; Cantley LC; Deak M; Campbell DG; van Aalten DM; Whitworth AJ; Alessi DR; Muqit MM
    Open Biol; 2011 Nov; 1(3):110012. PubMed ID: 22645651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65.
    Kondapalli C; Kazlauskaite A; Zhang N; Woodroof HI; Campbell DG; Gourlay R; Burchell L; Walden H; Macartney TJ; Deak M; Knebel A; Alessi DR; Muqit MM
    Open Biol; 2012 May; 2(5):120080. PubMed ID: 22724072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insights into ubiquitin phosphorylation by PINK1.
    Okatsu K; Sato Y; Yamano K; Matsuda N; Negishi L; Takahashi A; Yamagata A; Goto-Ito S; Mishima M; Ito Y; Oka T; Tanaka K; Fukai S
    Sci Rep; 2018 Jul; 8(1):10382. PubMed ID: 29991771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation.
    Kazlauskaite A; Martínez-Torres RJ; Wilkie S; Kumar A; Peltier J; Gonzalez A; Johnson C; Zhang J; Hope AG; Peggie M; Trost M; van Aalten DM; Alessi DR; Prescott AR; Knebel A; Walden H; Muqit MM
    EMBO Rep; 2015 Aug; 16(8):939-54. PubMed ID: 26116755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular simulation study of the clinical G409V mutant in PINK1 associated with early-onset Parkinson's disease.
    Lo HH; Chen YJ; Jiang CH; Tseng CH; Yang CN
    Int J Biol Macromol; 2024 Jan; 254(Pt 1):127566. PubMed ID: 37865376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation by PINK1 releases the UBL domain and initializes the conformational opening of the E3 ubiquitin ligase Parkin.
    Caulfield TR; Fiesel FC; Moussaud-Lamodière EL; Dourado DF; Flores SC; Springer W
    PLoS Comput Biol; 2014 Nov; 10(11):e1003935. PubMed ID: 25375667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex.
    Rasool S; Veyron S; Soya N; Eldeeb MA; Lukacs GL; Fon EA; Trempe JF
    Mol Cell; 2022 Jan; 82(1):44-59.e6. PubMed ID: 34875213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the structure of PINK1 and the mechanism of ubiquitin phosphorylation.
    Rasool S; Trempe JF
    Crit Rev Biochem Mol Biol; 2018 Oct; 53(5):515-534. PubMed ID: 30238821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of parkin by Parkinson disease-linked kinase PINK1 activates parkin E3 ligase function and NF-kappaB signaling.
    Sha D; Chin LS; Li L
    Hum Mol Genet; 2010 Jan; 19(2):352-63. PubMed ID: 19880420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria.
    Liu S; Sawada T; Lee S; Yu W; Silverio G; Alapatt P; Millan I; Shen A; Saxton W; Kanao T; Takahashi R; Hattori N; Imai Y; Lu B
    PLoS Genet; 2012; 8(3):e1002537. PubMed ID: 22396657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of PINK1 in complex with its substrate ubiquitin.
    Schubert AF; Gladkova C; Pardon E; Wagstaff JL; Freund SMV; Steyaert J; Maslen SL; Komander D
    Nature; 2017 Dec; 552(7683):51-56. PubMed ID: 29160309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the second phosphoubiquitin-binding site in parkin.
    Fakih R; Sauvé V; Gehring K
    J Biol Chem; 2022 Jul; 298(7):102114. PubMed ID: 35690145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.
    Aguirre JD; Dunkerley KM; Mercier P; Shaw GS
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):298-303. PubMed ID: 28007983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity.
    Kane LA; Lazarou M; Fogel AI; Li Y; Yamano K; Sarraf SA; Banerjee S; Youle RJ
    J Cell Biol; 2014 Apr; 205(2):143-53. PubMed ID: 24751536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Ubl/ubiquitin switch in the activation of Parkin.
    Sauvé V; Lilov A; Seirafi M; Vranas M; Rasool S; Kozlov G; Sprules T; Wang J; Trempe JF; Gehring K
    EMBO J; 2015 Oct; 34(20):2492-505. PubMed ID: 26254305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of phospho-ubiquitin-induced PARKIN activation.
    Wauer T; Simicek M; Schubert A; Komander D
    Nature; 2015 Aug; 524(7565):370-4. PubMed ID: 26161729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65.
    Kazlauskaite A; Kondapalli C; Gourlay R; Campbell DG; Ritorto MS; Hofmann K; Alessi DR; Knebel A; Trost M; Muqit MM
    Biochem J; 2014 May; 460(1):127-39. PubMed ID: 24660806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila.
    Imai Y; Kanao T; Sawada T; Kobayashi Y; Moriwaki Y; Ishida Y; Takeda K; Ichijo H; Lu B; Takahashi R
    PLoS Genet; 2010 Dec; 6(12):e1001229. PubMed ID: 21151955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.