These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28980527)

  • 1. Comparison of plasma and chemical modifications of poly-L-lactide-co-caprolactone scaffolds for heparin conjugation.
    Hsieh YF; Sahagian K; Huang F; Xu K; Patel S; Li S
    Biomed Mater; 2017 Oct; 12(6):065004. PubMed ID: 28980527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo.
    Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M
    Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441
    [No Abstract]   [Full Text] [Related]  

  • 4. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Well-organized neointima of large-pore poly(L-lactic acid) vascular graft coated with poly(L-lactic-co-ε-caprolactone) prevents calcific deposition compared to small-pore electrospun poly(L-lactic acid) graft in a mouse aortic implantation model.
    Tara S; Kurobe H; Rocco KA; Maxfield MW; Best CA; Yi T; Naito Y; Breuer CK; Shinoka T
    Atherosclerosis; 2014 Dec; 237(2):684-91. PubMed ID: 25463106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun polyhydroxybutyrate and poly(L-lactide-co-ε-caprolactone) composites as nanofibrous scaffolds.
    Daranarong D; Chan RT; Wanandy NS; Molloy R; Punyodom W; Foster LJ
    Biomed Res Int; 2014; 2014():741408. PubMed ID: 24900983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering.
    Castilho M; Feyen D; Flandes-Iparraguirre M; Hochleitner G; Groll J; Doevendans PAF; Vermonden T; Ito K; Sluijter JPG; Malda J
    Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28699224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model.
    Matsuzaki Y; Iwaki R; Reinhardt JW; Chang YC; Miyamoto S; Kelly J; Zbinden J; Blum K; Mirhaidari G; Ulziibayar A; Shoji T; Breuer CK; Shinoka T
    Acta Biomater; 2020 Oct; 115():176-184. PubMed ID: 32822820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SDF-1α peptide tethered polyester facilitates tissue repair by endogenous cell mobilization and recruitment.
    Shafiq M; Kong D; Kim SH
    J Biomed Mater Res A; 2017 Oct; 105(10):2670-2684. PubMed ID: 28571106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ blood vessel regeneration using neuropeptide substance P-conjugated small-diameter vascular grafts.
    Shafiq M; Wang L; Zhi D; Zhang Q; Wang K; Wang L; Kim DH; Kong D; Kim SH
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1669-1683. PubMed ID: 30315717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility evaluation of heparin-conjugated poly(ε-caprolactone) scaffolds in a rat subcutaneous implantation model.
    Xu Z; Feng Z; Guo L; Ye L; Tong Z; Geng X; Wang C; Jin X; Hui X; Gu Y
    J Mater Sci Mater Med; 2020 Aug; 31(8):76. PubMed ID: 32761269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography.
    Melchels FP; Bertoldi K; Gabbrielli R; Velders AH; Feijen J; Grijpma DW
    Biomaterials; 2010 Sep; 31(27):6909-16. PubMed ID: 20579724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vascular Remodeling Process of Heparin-Conjugated Poly(ε-Caprolactone) Scaffold in a Rat Abdominal Aorta Replacement Model.
    Xu Z; Gu Y; Li J; Feng Z; Guo L; Tong Z; Ye L; Wang C; Wang R; Geng X; Wang C; Zhang J
    J Vasc Res; 2018; 55(6):338-349. PubMed ID: 30485863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation.
    Laurent CP; Vaquette C; Liu X; Schmitt JF; Rahouadj R
    J Biomater Appl; 2018 Apr; 32(9):1276-1288. PubMed ID: 29409376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of setup orientation on blend electrospinning of poly-ε-caprolactone-gelatin scaffolds for vascular tissue engineering.
    Suresh S; Gryshkov O; Glasmacher B
    Int J Artif Organs; 2018 Nov; 41(11):801-810. PubMed ID: 30376770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve.
    Wang X; Liu J; Jing H; Li B; Sun Z; Li B; Kong D; Leng X; Wang Z
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111872. PubMed ID: 33579497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone) scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration.
    Shafiq M; Jung Y; Kim SH
    Eur Cell Mater; 2015 Nov; 30():282-302. PubMed ID: 26614483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidimensional nanofibrous scaffolds of poly(lactide-co-caprolactone) and poly(ethyl oxazoline) with improved features for cardiac tissue engineering.
    Lakshmanan R; Krishnan UM; Sethuraman S
    Nanomedicine (Lond); 2015; 10(23):3451-67. PubMed ID: 26607019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heparin-modified small-diameter nanofibrous vascular grafts.
    Janairo RR; Henry JJ; Lee BL; Hashi CK; Derugin N; Lee R; Li S
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):22-7. PubMed ID: 22434651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.