These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 28981192)

  • 21. Soil carbon stocks and dynamics of different land uses in Italy using the LUCAS soil database.
    Khan MZ; Chiti T
    J Environ Manage; 2022 Mar; 306():114452. PubMed ID: 35032939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of priming on global soil carbon stocks.
    Guenet B; Camino-Serrano M; Ciais P; Tifafi M; Maignan F; Soong JL; Janssens IA
    Glob Chang Biol; 2018 May; 24(5):1873-1883. PubMed ID: 29365210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on the role of organic inputs in maintaining the soil carbon pool of the terrestrial ecosystem.
    Bhattacharya SS; Kim KH; Das S; Uchimiya M; Jeon BH; Kwon E; Szulejko JE
    J Environ Manage; 2016 Feb; 167():214-27. PubMed ID: 26686074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic soil functions assessment employing land use and climate scenarios at regional scale.
    Jost E; Schönhart M; Skalský R; Balkovič J; Schmid E; Mitter H
    J Environ Manage; 2021 Jun; 287():112318. PubMed ID: 33740746
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Global pattern of soil carbon losses due to the conversion of forests to agricultural land.
    Wei X; Shao M; Gale W; Li L
    Sci Rep; 2014 Feb; 4():4062. PubMed ID: 24513580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A global meta-analysis of soil organic carbon in the Anthropocene.
    Beillouin D; Corbeels M; Demenois J; Berre D; Boyer A; Fallot A; Feder F; Cardinael R
    Nat Commun; 2023 Jun; 14(1):3700. PubMed ID: 37349294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics.
    Singh AK; Rai A; Pandey V; Singh N
    J Environ Manage; 2017 May; 192():142-149. PubMed ID: 28160641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A generalizable framework for spatially explicit exploration of soil organic carbon sequestration on global marginal land.
    Albers A; Avadí A; Hamelin L
    Sci Rep; 2022 Jul; 12(1):11144. PubMed ID: 35778406
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change.
    Adhikari K; Owens PR; Libohova Z; Miller DM; Wills SA; Nemecek J
    Sci Total Environ; 2019 Jun; 667():833-845. PubMed ID: 30852437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soil carbon debt of 12,000 years of human land use.
    Sanderman J; Hengl T; Fiske GJ
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):9575-9580. PubMed ID: 28827323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.
    Aksoy E; Yigini Y; Montanarella L
    PLoS One; 2016; 11(3):e0152098. PubMed ID: 27011357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial models with data-driven parameters predict stronger soil carbon responses to climate change.
    Hararuk O; Smith MJ; Luo Y
    Glob Chang Biol; 2015 Jun; 21(6):2439-53. PubMed ID: 25504863
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simulated Soil Organic Carbon Responses to Crop Rotation, Tillage, and Climate Change in North Dakota.
    Nash PR; Gollany HT; Liebig MA; Halvorson JJ; Archer DW; Tanaka DL
    J Environ Qual; 2018 Jul; 47(4):654-662. PubMed ID: 30025045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon benefits of wolfberry plantation on secondary saline land in Jingtai oasis, Gansu--A case study on application of the CBP model.
    Wang Y; Zhao C; Ma Q; Li Y; Jing H; Sun T; Milne E; Easter M; Paustian K; Au Yong HW; McDonagh J
    J Environ Manage; 2015 Jul; 157():303-10. PubMed ID: 25925391
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil organic carbon in irrigated agricultural systems: A meta-analysis.
    Emde D; Hannam KD; Most I; Nelson LM; Jones MD
    Glob Chang Biol; 2021 Aug; 27(16):3898-3910. PubMed ID: 33993596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Decadally cycling soil carbon is more sensitive to warming than faster-cycling soil carbon.
    Lin J; Zhu B; Cheng W
    Glob Chang Biol; 2015 Dec; 21(12):4602-12. PubMed ID: 26301625
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Soil carbon sequestration potential in global croplands.
    Padarian J; Minasny B; McBratney A; Smith P
    PeerJ; 2022; 10():e13740. PubMed ID: 35891649
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis.
    Bai X; Huang Y; Ren W; Coyne M; Jacinthe PA; Tao B; Hui D; Yang J; Matocha C
    Glob Chang Biol; 2019 Aug; 25(8):2591-2606. PubMed ID: 31002465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global variation in soil carbon sequestration potential through improved cropland management.
    Lessmann M; Ros GH; Young MD; de Vries W
    Glob Chang Biol; 2022 Feb; 28(3):1162-1177. PubMed ID: 34726814
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial community shifts reflect losses of native soil carbon with pyrogenic and fresh organic matter additions and are greatest in low-carbon soils.
    Whitman T; DeCiucies S; Hanley K; Enders A; Woolet J; Lehmann J
    Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33514520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.