These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 28981255)
21. Optimization of ion exchange sigmoidal gradients using hybrid models: Implementation of quality by design in analytical method development. Joshi VS; Kumar V; Rathore AS J Chromatogr A; 2017 Mar; 1491():145-152. PubMed ID: 28259457 [TBL] [Abstract][Full Text] [Related]
22. Insights into the generation of monoclonal antibody acidic charge variants during Chinese hamster ovary cell cultures. Tang H; Miao S; Zhang X; Fan L; Liu X; Tan WS; Zhao L Appl Microbiol Biotechnol; 2018 Feb; 102(3):1203-1214. PubMed ID: 29238873 [TBL] [Abstract][Full Text] [Related]
23. Coupling cation and anion exchange chromatography for fast separation of monoclonal antibody charge variants. Zimoch-Rumanek P; Antos D J Chromatogr A; 2024 Sep; 1733():465256. PubMed ID: 39153427 [TBL] [Abstract][Full Text] [Related]
24. Isolation and characterization of therapeutic antibody charge variants using cation exchange displacement chromatography. Zhang T; Bourret J; Cano T J Chromatogr A; 2011 Aug; 1218(31):5079-86. PubMed ID: 21700290 [TBL] [Abstract][Full Text] [Related]
25. Ion exchange chromatography hyphenated with fluorescence detector as a sensitive alternative to UV detector: Applications in biopharmaceutical analysis. Joshi S; Upadhyay K; S Rathore A J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Dec; 1212():123511. PubMed ID: 36334329 [TBL] [Abstract][Full Text] [Related]
26. Targeted CQA analytical control strategy for commercial antibody products: Replacing ion-exchange chromatography methods for charge heterogeneity with multi-attribute monitoring. Evans AR; Mulholland J; Lewis MJ; Hu P MAbs; 2024; 16(1):2341641. PubMed ID: 38652517 [TBL] [Abstract][Full Text] [Related]
27. Model-based design and control of a small-scale integrated continuous end-to-end mAb platform. Gomis-Fons J; Schwarz H; Zhang L; Andersson N; Nilsson B; Castan A; Solbrand A; Stevenson J; Chotteau V Biotechnol Prog; 2020 Jul; 36(4):e2995. PubMed ID: 32233078 [TBL] [Abstract][Full Text] [Related]
28. An Online Two-Dimensional Approach to Characterizing the Charge-Based Heterogeneity of Recombinant Monoclonal Antibodies Using a 2D-CEX-AEX-MS Workflow. Kumar S; Peruri V; Rathore AS J Am Soc Mass Spectrom; 2023 Dec; 34(12):2801-2810. PubMed ID: 37994779 [TBL] [Abstract][Full Text] [Related]
29. Identification of multiple sources of the acidic charge variants in an IgG1 monoclonal antibody. Miao S; Xie P; Zou M; Fan L; Liu X; Zhou Y; Zhao L; Ding D; Wang H; Tan WS Appl Microbiol Biotechnol; 2017 Jul; 101(14):5627-5638. PubMed ID: 28439623 [TBL] [Abstract][Full Text] [Related]
30. Integrated Chromatographic Platform for Simultaneous Separation of Charge Variants and Aggregates from Monoclonal Antibody Therapeutic Products. Kateja N; Kumar D; Godara A; Kumar V; Rathore AS Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28881096 [TBL] [Abstract][Full Text] [Related]
31. Validation of a pH gradient-based ion-exchange chromatography method for high-resolution monoclonal antibody charge variant separations. Rea JC; Moreno GT; Lou Y; Farnan D J Pharm Biomed Anal; 2011 Jan; 54(2):317-23. PubMed ID: 20884149 [TBL] [Abstract][Full Text] [Related]
32. Multiple, simultaneous, independent gradients for a versatile multidimensional liquid chromatography. Part II: Application 3 - Scouting optimization strategies for separation of monoclonal antibodies by dual simultaneous independent gradients of pH & salt on a weak cation exchange stationary phase. Tsonev LI; Hirsh AG J Chromatogr A; 2024 Aug; 1730():465065. PubMed ID: 38879974 [TBL] [Abstract][Full Text] [Related]
33. Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry: Case study after a long-term storage at +5°C. Leblanc Y; Ramon C; Bihoreau N; Chevreux G J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Mar; 1048():130-139. PubMed ID: 28242492 [TBL] [Abstract][Full Text] [Related]
34. Analysis of charge heterogeneities in mAbs using imaged CE. He XZ; Que AH; Mo JJ Electrophoresis; 2009 Mar; 30(5):714-22. PubMed ID: 19199293 [TBL] [Abstract][Full Text] [Related]
35. Process development for robust removal of aggregates using cation exchange chromatography in monoclonal antibody purification with implementation of quality by design. Xu Z; Li J; Zhou JX Prep Biochem Biotechnol; 2012; 42(2):183-202. PubMed ID: 22394066 [TBL] [Abstract][Full Text] [Related]
37. High throughput chromatography strategies for potential use in the formal process characterization of a monoclonal antibody. Petroff MG; Bao H; Welsh JP; van Beuningen-de Vaan M; Pollard JM; Roush DJ; Kandula S; Machielsen P; Tugcu N; Linden TO Biotechnol Bioeng; 2016 Jun; 113(6):1273-83. PubMed ID: 26639315 [TBL] [Abstract][Full Text] [Related]
38. Displacement to separate host-cell proteins and aggregates in cation-exchange chromatography of monoclonal antibodies. Khanal O; Kumar V; Lenhoff AM Biotechnol Bioeng; 2021 Jan; 118(1):164-174. PubMed ID: 32910459 [TBL] [Abstract][Full Text] [Related]
39. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures. Li MY; Ebel B; Paris C; Chauchard F; Guedon E; Marc A Biotechnol Prog; 2018 Mar; 34(2):486-493. PubMed ID: 29314747 [TBL] [Abstract][Full Text] [Related]