These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2898126)

  • 21. Bulbospinal and intraspinal thyrotropin releasing hormone systems: modulation of spinal cord pain transmission.
    Behbehani MM; Zemlan FP
    Neuropeptides; 1990 Mar; 15(3):161-8. PubMed ID: 2174521
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies on the separate roles of forebrain and spinal serotonin in morphine analgesia.
    Romandini S; Esposito E; Samanin R
    Naunyn Schmiedebergs Arch Pharmacol; 1986 Mar; 332(3):208-12. PubMed ID: 3713867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spinal cord serotonin release and raised blood pressure after brainstem kainic acid injection.
    Pilowsky PM; Kapoor V; Minson JB; West MJ; Chalmers JP
    Brain Res; 1986 Feb; 366(1-2):354-7. PubMed ID: 3697690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analgesia, development of tolerance, and 5-hydroxytryptamine turnover in the rat after cerebral and systemic administration of morphine.
    Vasko MR; Vogt M
    Neuroscience; 1982 May; 7(5):1215-25. PubMed ID: 6180353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separate involvement of the spinal noradrenergic and serotonergic systems in morphine analgesia: the differences in mechanical and thermal algesic tests.
    Kuraishi Y; Harada Y; Aratani S; Satoh M; Takagi H
    Brain Res; 1983 Aug; 273(2):245-52. PubMed ID: 6616237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analgesia produced by microinjection of L-glutamate into the rostral ventromedial bulbar nuclei of the rat and its inhibition by intrathecal alpha-adrenergic blocking agents.
    Satoh M; Oku R; Akaike A
    Brain Res; 1983 Feb; 261(2):361-4. PubMed ID: 6131729
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lesions to ascending noradrenergic and serotonergic pathways modify antinociception produced by intracerebroventricular administration of morphine.
    Sawynok J; Reid A
    Neuropharmacology; 1989 Feb; 28(2):141-7. PubMed ID: 2497401
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative characterization and spinal pathway mediating inhibition of spinal nociceptive transmission from the lateral reticular nucleus in the rat.
    Janss AJ; Gebhart GF
    J Neurophysiol; 1988 Jan; 59(1):226-47. PubMed ID: 2893831
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation.
    Jones SL; Gebhart GF
    Brain Res; 1988 Sep; 460(2):281-96. PubMed ID: 2852046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Serotonergic neurotoxic lesions facilitate male sexual reflexes.
    Marson L; McKenna KE
    Pharmacol Biochem Behav; 1994 Apr; 47(4):883-8. PubMed ID: 7518085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimulation of 5-hydroxytryptamine nerve cells in dorsal and median raphe nuclei elevates blood glucose in rats.
    Lin MT; Shian LR
    Pflugers Arch; 1991 Jan; 417(5):441-5. PubMed ID: 2011467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual effect of serotonin on formalin-induced nociception in the rat spinal cord.
    Oyama T; Ueda M; Kuraishi Y; Akaike A; Satoh M
    Neurosci Res; 1996 Jun; 25(2):129-35. PubMed ID: 8829149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential mediation of descending pain facilitation and inhibition by spinal 5HT-3 and 5HT-7 receptors.
    Dogrul A; Ossipov MH; Porreca F
    Brain Res; 2009 Jul; 1280():52-9. PubMed ID: 19427839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative re-evaluation of descending serotonergic and non-serotonergic projections from the medulla of the rodent: evidence for extensive co-existence of serotonin and peptides in the same spinally projecting neurons, but not from the nucleus raphe magnus.
    Bowker RM; Abbott LC
    Brain Res; 1990 Mar; 512(1):15-25. PubMed ID: 2337803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of the spinal serotonergic system in analgesia produced by castration.
    Nayebi AR; Ahmadiani A
    Pharmacol Biochem Behav; 1999 Nov; 64(3):467-71. PubMed ID: 10548257
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substance P immunoreactivity released from rat spinal cord after kainic acid excitation of the ventral medulla oblongata: a correlation with increases in blood pressure.
    Takano Y; Martin JE; Leeman SE; Loewy AD
    Brain Res; 1984 Jan; 291(1):168-72. PubMed ID: 6199081
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved immunohistochemical visualization of central serotonin nerves after loading with 5,7-dihydroxytryptamine.
    Howe PR; Cuello AC; Costa M; Furness JB
    Neurosci Lett; 1982 Mar; 29(1):1-6. PubMed ID: 7041011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of footshock-induced analgesia by spinal 5,7-dihydroxytryptamine lesions.
    Hutson PH; Tricklebank MD; Curzon G
    Brain Res; 1982 Apr; 237(2):367-72. PubMed ID: 7083000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Midline B3 serotonin nerves in rat medulla are involved in hypotensive effect of methyldopa.
    Macrae IM; Minson JB; Kapoor V; Morris MJ; Chalmers JP
    J Cardiovasc Pharmacol; 1986; 8(2):381-5. PubMed ID: 2422478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peripheral nerve injury reduces analgesic effects of systemic morphine via spinal 5-hydroxytryptamine 3 receptors.
    Kimura M; Obata H; Saito S
    Anesthesiology; 2014 Aug; 121(2):362-71. PubMed ID: 24887968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.