These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28981264)

  • 61. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures.
    Sarina S; Zhu H; Jaatinen E; Xiao Q; Liu H; Jia J; Chen C; Zhao J
    J Am Chem Soc; 2013 Apr; 135(15):5793-801. PubMed ID: 23566035
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid.
    Yang S; Shen C; Tian Y; Zhang X; Gao HJ
    Nanoscale; 2014 Nov; 6(21):13154-62. PubMed ID: 25251546
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Generalized Synthetic Strategy for Transition-Metal-Doped Brookite-Phase TiO
    Zhang Z; Wu Q; Johnson G; Ye Y; Li X; Li N; Cui M; Lee JD; Liu C; Zhao S; Li S; Orlov A; Murray CB; Zhang X; Gunnoe TB; Su D; Zhang S
    J Am Chem Soc; 2019 Oct; 141(42):16548-16552. PubMed ID: 31535853
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Monodisperse core/shell Ni/FePt nanoparticles and their conversion to Ni/Pt to catalyze oxygen reduction.
    Zhang S; Hao Y; Su D; Doan-Nguyen VV; Wu Y; Li J; Sun S; Murray CB
    J Am Chem Soc; 2014 Nov; 136(45):15921-4. PubMed ID: 25350678
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method.
    Yano H; Kataoka M; Yamashita H; Uchida H; Watanabe M
    Langmuir; 2007 May; 23(11):6438-45. PubMed ID: 17441742
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Late first-row transition metal complexes of a tetradentate pyridinophane ligand: electronic properties and reactivity implications.
    Khusnutdinova JR; Luo J; Rath NP; Mirica LM
    Inorg Chem; 2013 Apr; 52(7):3920-32. PubMed ID: 23517006
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles: influence of Ni sandwich layers on catalytic electrooxidations.
    Sneed BT; Young AP; Jalalpoor D; Golden MC; Mao S; Jiang Y; Wang Y; Tsung CK
    ACS Nano; 2014 Jul; 8(7):7239-50. PubMed ID: 24896733
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods.
    Koteeswara Reddy N; Winkler S; Koch N; Pinna N
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3226-32. PubMed ID: 26784675
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces.
    Abdelmoti LG; Zamborini FP
    Langmuir; 2010 Aug; 26(16):13511-21. PubMed ID: 20695598
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid.
    Jin T; Guo S; Zuo JL; Sun S
    Nanoscale; 2013 Jan; 5(1):160-3. PubMed ID: 23172252
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles.
    Zhang S; Guo S; Zhu H; Su D; Sun S
    J Am Chem Soc; 2012 Mar; 134(11):5060-3. PubMed ID: 22380021
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Strategies for stabilization of electrodeposited metal particles in electropolymerized films for H2O oxidation and H+ reduction.
    Torelli DA; Harrison DP; Lapides AM; Meyer TJ
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7050-7. PubMed ID: 23806103
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.
    Du C; Chen M; Wang W; Yin G
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):105-9. PubMed ID: 21192691
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation.
    Zhang X; Yin H; Wang J; Chang L; Gao Y; Liu W; Tang Z
    Nanoscale; 2013 Sep; 5(18):8392-7. PubMed ID: 23884237
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Electrocatalytic oxygen evolution over supported small amorphous Ni-Fe nanoparticles in alkaline electrolyte.
    Qiu Y; Xin L; Li W
    Langmuir; 2014 Jul; 30(26):7893-901. PubMed ID: 24914708
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Mixed-phase PdRu bimetallic structures with high activity and stability for formic acid electrooxidation.
    Wu D; Zheng Z; Gao S; Cao M; Cao R
    Phys Chem Chem Phys; 2012 Jun; 14(22):8051-7. PubMed ID: 22555145
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multifunctional Ultrathin PdxCu(1-x) and Pt∼PdxCu(1-x) One-Dimensional Nanowire Motifs for Various Small Molecule Oxidation Reactions.
    Liu H; Adzic RR; Wong SS
    ACS Appl Mater Interfaces; 2015 Dec; 7(47):26145-57. PubMed ID: 26580482
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hierarchical Cu pillar electrodes for electrochemical CO2 reduction to formic acid with low overpotential.
    Chung J; Won da H; Koh J; Kim EH; Woo SI
    Phys Chem Chem Phys; 2016 Feb; 18(8):6252-8. PubMed ID: 26853054
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A theoretical investigation of 38-atom CuPd clusters: the effect of potential parameterisation on structure and segregation.
    Casey-Stevens CA; Yang M; Weal GR; McIntyre SM; Nally BK; Garden AL
    Phys Chem Chem Phys; 2021 Aug; 23(30):15950-15964. PubMed ID: 34308938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.