These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 28981284)
21. Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field. Zhang L; Duin AC; Zybin SV; Goddard WA J Phys Chem B; 2009 Aug; 113(31):10770-8. PubMed ID: 19601597 [TBL] [Abstract][Full Text] [Related]
22. Sensitivity of methyl thiolate desulfurization selectivity to reaction temperature and hydroxyl coverage. Kang DH; Friend CM Langmuir; 2004 Dec; 20(26):11443-9. PubMed ID: 15595768 [TBL] [Abstract][Full Text] [Related]
23. Molecular Dynamics Simulation of Silicon Dioxide Etching by Hydrogen Fluoride Using the Reactive Force Field. Kim DH; Kwak SJ; Jeong JH; Yoo S; Nam SK; Kim Y; Lee WB ACS Omega; 2021 Jun; 6(24):16009-16015. PubMed ID: 34179646 [TBL] [Abstract][Full Text] [Related]
24. Development of a ReaxFF reactive force field for aqueous chloride and copper chloride. Rahaman O; van Duin AC; Bryantsev VS; Mueller JE; Solares SD; Goddard WA; Doren DJ J Phys Chem A; 2010 Mar; 114(10):3556-68. PubMed ID: 20180586 [TBL] [Abstract][Full Text] [Related]
25. Reaction analysis and visualization of ReaxFF molecular dynamics simulations. Liu J; Li X; Guo L; Zheng M; Han J; Yuan X; Nie F; Liu X J Mol Graph Model; 2014 Sep; 53():13-22. PubMed ID: 25064439 [TBL] [Abstract][Full Text] [Related]
26. Surface chemistry of copper metal and copper oxide atomic layer deposition from copper(ii) acetylacetonate: a combined first-principles and reactive molecular dynamics study. Hu X; Schuster J; Schulz SE; Gessner T Phys Chem Chem Phys; 2015 Oct; 17(40):26892-902. PubMed ID: 26399423 [TBL] [Abstract][Full Text] [Related]
28. Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures. Zhang B; van Duin AC; Johnson JK J Phys Chem B; 2014 Oct; 118(41):12008-16. PubMed ID: 25285669 [TBL] [Abstract][Full Text] [Related]
29. Investigation of the decomposition mechanism of MTNP melt-cast explosive at different temperatures and pressures through ReaxFF/lg molecular dynamics simulations. Mao JS; Wang BG; Zhu R; Chen YF; Fu JB J Mol Model; 2023 Nov; 29(11):354. PubMed ID: 37910219 [TBL] [Abstract][Full Text] [Related]
30. Reactive force field development for magnesium chloride hydrates and its application for seasonal heat storage. Pathak AD; Nedea S; van Duin AC; Zondag H; Rindt C; Smeulders D Phys Chem Chem Phys; 2016 Jun; 18(23):15838-47. PubMed ID: 27229633 [TBL] [Abstract][Full Text] [Related]
31. Optimization and application of lithium parameters for the reactive force field, ReaxFF. Han SS; van Duin AC; Goddard WA; Lee HM J Phys Chem A; 2005 May; 109(20):4575-82. PubMed ID: 16833794 [TBL] [Abstract][Full Text] [Related]
32. Initial Decomposition Mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under Shock Loading: ReaxFF Parameterization and Molecular Dynamic Study. Du L; Jin S; Nie P; She C; Wang J Molecules; 2021 Aug; 26(16):. PubMed ID: 34443396 [TBL] [Abstract][Full Text] [Related]
33. ReaxFF-molecular dynamics simulations of non-oxidative and non-catalyzed thermal decomposition of methane at high temperatures. Lümmen N Phys Chem Chem Phys; 2010 Jul; 12(28):7883-93. PubMed ID: 20505869 [TBL] [Abstract][Full Text] [Related]
34. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. Nielson KD; van Duin AC; Oxgaard J; Deng WQ; Goddard WA J Phys Chem A; 2005 Jan; 109(3):493-9. PubMed ID: 16833370 [TBL] [Abstract][Full Text] [Related]
35. Effects of fuel additives on the thermal cracking of n-decane from reactive molecular dynamics. Wang QD; Hua XX; Cheng XM; Li JQ; Li XY J Phys Chem A; 2012 Apr; 116(15):3794-801. PubMed ID: 22435791 [TBL] [Abstract][Full Text] [Related]
36. The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFF(HBN) development. Han SS; Kang JK; Lee HM; van Duin AC; Goddard WA J Chem Phys; 2005 Sep; 123(11):114703. PubMed ID: 16392579 [TBL] [Abstract][Full Text] [Related]
37. The dynamics of copper intercalated molybdenum ditelluride. Onofrio N; Guzman D; Strachan A J Chem Phys; 2016 Nov; 145(19):194702. PubMed ID: 27875887 [TBL] [Abstract][Full Text] [Related]
38. Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion. Cheng T; Jaramillo-Botero A; Goddard WA; Sun H J Am Chem Soc; 2014 Jul; 136(26):9434-42. PubMed ID: 24885152 [TBL] [Abstract][Full Text] [Related]
39. Effect of density on the thermal decomposition mechanism of ε-CL-20: a ReaxFF reactive molecular dynamics simulation study. Wang F; Chen L; Geng D; Lu J; Wu J Phys Chem Chem Phys; 2018 Sep; 20(35):22600-22609. PubMed ID: 30116820 [TBL] [Abstract][Full Text] [Related]
40. Decomposition of methanthiol on Pt(111): a density functional investigation. Zhu H; Guo W; Jiang R; Zhao L; Lu X; Li M; Fu D; Shan H Langmuir; 2010 Jul; 26(14):12017-25. PubMed ID: 20578754 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]