These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 28981287)

  • 1. Nanoengineered Colloidal Inks for 3D Bioprinting.
    Peak CW; Stein J; Gold KA; Gaharwar AK
    Langmuir; 2018 Jan; 34(3):917-925. PubMed ID: 28981287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear-Thinning and Thermo-Reversible Nanoengineered Inks for 3D Bioprinting.
    Wilson SA; Cross LM; Peak CW; Gaharwar AK
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43449-43458. PubMed ID: 29214803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Printing Therapeutic Proteins in 3D using Nanoengineered Bioink to Control and Direct Cell Migration.
    Peak CW; Singh KA; Adlouni M; Chen J; Gaharwar AK
    Adv Healthc Mater; 2019 Jun; 8(11):e1801553. PubMed ID: 31066517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Granular Biphasic Colloidal Hydrogels for 3D Bioprinting.
    Deo KA; Murali A; Tronolone JJ; Mandrona C; Lee HP; Rajput S; Hargett SE; Selahi A; Sun Y; Alge DL; Jain A; Gaharwar AK
    Adv Healthc Mater; 2024 Oct; 13(25):e2303810. PubMed ID: 38749006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks.
    Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F
    Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting.
    Xin S; Chimene D; Garza JE; Gaharwar AK; Alge DL
    Biomater Sci; 2019 Feb; 7(3):1179-1187. PubMed ID: 30656307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoengineered Ionic-Covalent Entanglement (NICE) Bioinks for 3D Bioprinting.
    Chimene D; Peak CW; Gentry JL; Carrow JK; Cross LM; Mondragon E; Cardoso GB; Kaunas R; Gaharwar AK
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):9957-9968. PubMed ID: 29461795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gelatin methacryloyl and Laponite bioink for 3D bioprinted organotypic tumor modeling.
    de Barros NR; Gomez A; Ermis M; Falcone N; Haghniaz R; Young P; Gao Y; Aquino AF; Li S; Niu S; Chen R; Huang S; Zhu Y; Eliahoo P; Sun A; Khorsandi D; Kim J; Kelber J; Khademhosseini A; Kim HJ; Li B
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37348491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization enhanced thermal-sensitive hydrogels of PCL-PEG-PCL triblock copolymer for 3D printing.
    Cui Y; Jin R; Zhou Y; Yu M; Ling Y; Wang LQ
    Biomed Mater; 2021 Feb; 16(3):. PubMed ID: 33086194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications.
    Zandi N; Sani ES; Mostafavi E; Ibrahim DM; Saleh B; Shokrgozar MA; Tamjid E; Weiss PS; Simchi A; Annabi N
    Biomaterials; 2021 Jan; 267():120476. PubMed ID: 33137603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Bioprinting of Self-Standing Silk-Based Bioink.
    Zheng Z; Wu J; Liu M; Wang H; Li C; Rodriguez MJ; Li G; Wang X; Kaplan DL
    Adv Healthc Mater; 2018 Mar; 7(6):e1701026. PubMed ID: 29292585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FRESH-based 3D bioprinting of complex biological geometries using chitosan bioink.
    Chaurasia P; Singh R; Mahto SK
    Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38942010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a clay based bioink for 3D cell printing for skeletal application.
    Ahlfeld T; Cidonio G; Kilian D; Duin S; Akkineni AR; Dawson JI; Yang S; Lode A; Oreffo ROC; Gelinsky M
    Biofabrication; 2017 Jul; 9(3):034103. PubMed ID: 28691691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(ethylene glycol)-Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting.
    Kim MH; Lin CC
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2737-2746. PubMed ID: 36608274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploitation of Cationic Silica Nanoparticles for Bioprinting of Large-Scale Constructs with High Printing Fidelity.
    Lee M; Bae K; Guillon P; Chang J; Arlov Ø; Zenobi-Wong M
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):37820-37828. PubMed ID: 30360117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.