These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28981420)

  • 1. Knee Motion Generation Method for Transfemoral Prosthesis Based on Kinematic Synergy and Inertial Motion.
    Sano H; Wada T
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2387-2397. PubMed ID: 28981420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of inertial properties of transfemoral prosthesis on leg swing motion during stair ascent.
    Inoue K; Hobara H; Wada T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1591-4. PubMed ID: 24110006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics.
    Narang YS; Arelekatti VN; Winter AG
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):754-63. PubMed ID: 26186794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lower-leg inertial properties in transtibial amputees and control subjects and their influence on the swing phase during gait.
    Selles RW; Korteland S; Van Soest AJ; Bussmann JB; Stam HJ
    Arch Phys Med Rehabil; 2003 Apr; 84(4):569-77. PubMed ID: 12690597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Walking characteristics of runners with a transfemoral or knee-disarticulation prosthesis.
    Kobayashi T; Hisano G; Namiki Y; Hashizume S; Hobara H
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105132. PubMed ID: 32768802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.
    Rohani F; Richter H; van den Bogert AJ
    PLoS One; 2017; 12(11):e0188266. PubMed ID: 29149213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical model for encoding joint dynamics: applications to transfemoral prosthesis control.
    McGibbon CA
    J Appl Physiol (1985); 2012 May; 112(9):1600-11. PubMed ID: 22282487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Powered knee and ankle prosthesis with indirect volitional swing control enables level-ground walking and crossing over obstacles.
    Mendez J; Hood S; Gunnel A; Lenzi T
    Sci Robot; 2020 Jul; 5(44):. PubMed ID: 33022611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait evaluation of a transfemoral prosthetic simulator.
    Lemaire ED; Nielen D; Paquin MA
    Arch Phys Med Rehabil; 2000 Jun; 81(6):840-3. PubMed ID: 10857536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial Measuring System to Evaluate Gait Parameters and Dynamic Alignments for Lower-Limb Amputation Subjects.
    Han SL; Cai ML; Pan MC
    Sensors (Basel); 2024 Feb; 24(5):. PubMed ID: 38475055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards optimal toe-clearance in synthesizing polycentric prosthetic knee mechanism.
    Marisami P; Venkatachalam R
    Comput Methods Biomech Biomed Engin; 2022 May; 25(6):656-667. PubMed ID: 34544295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uphill and downhill walking in unilateral lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Aug; 28(2):235-42. PubMed ID: 18242995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contributions of muscles to terminal-swing knee motions vary with walking speed.
    Arnold AS; Schwartz MH; Thelen DG; Delp SL
    J Biomech; 2007; 40(16):3660-71. PubMed ID: 17659289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscillation and reaction board techniques for estimating inertial properties of a below-knee prosthesis.
    Smith JD; Ferris AE; Heise GD; Hinrichs RN; Martin PE
    J Vis Exp; 2014 May; (87):. PubMed ID: 24837164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active functional stiffness of the knee joint during activities of daily living: a parameter for improved design of prosthetic limbs.
    Bayram HA; Chien CH; Davis BL
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1193-9. PubMed ID: 25248942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roll-over shapes of the able-bodied knee-ankle-foot system during gait initiation, steady-state walking, and gait termination.
    Miff SC; Hansen AH; Childress DS; Gard SA; Meier MR
    Gait Posture; 2008 Feb; 27(2):316-22. PubMed ID: 17544273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.