BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28981422)

  • 1. Phenotype Prediction from Metagenomic Data Using Clustering and Assembly with Multiple Instance Learning (CAMIL).
    Rahman MA; LaPierre N; Rangwala H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):828-840. PubMed ID: 28981422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenome sequence clustering with hash-based canopies.
    Rahman MA; LaPierre N; Rangwala H; Barbara D
    J Bioinform Comput Biol; 2017 Dec; 15(6):1740006. PubMed ID: 29113561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data.
    Rahman MA; Rangwala H
    Bioinformatics; 2020 Jul; 36(Suppl_1):i39-i47. PubMed ID: 32657370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binning Metagenomic Contigs Using Unsupervised Clustering and Reference Databases.
    Jiang Z; Li X; Guo L
    Interdiscip Sci; 2022 Dec; 14(4):795-803. PubMed ID: 35639335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scalable assembly-free variable selection algorithm for biomarker discovery from metagenomes.
    Gkanogiannis A; Gazut S; Salanoubat M; Kanj S; Brüls T
    BMC Bioinformatics; 2016 Aug; 17(1):311. PubMed ID: 27542753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unsupervised Binning of Metagenomic Assembled Contigs Using Improved Fuzzy C-Means Method.
    Liu Y; Hou T; Kang B; Liu F
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1459-1467. PubMed ID: 27295684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locality-Sensitive Hashing-Based k-Mer Clustering for Identification of Differential Microbial Markers Related to Host Phenotype.
    Han W; Tang H; Ye Y
    J Comput Biol; 2022 Jul; 29(7):738-751. PubMed ID: 35584271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetaCAA: A clustering-aided methodology for efficient assembly of metagenomic datasets.
    Reddy RM; Mohammed MH; Mande SS
    Genomics; 2014; 103(2-3):161-8. PubMed ID: 24607570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MetaCRS: unsupervised clustering of contigs with the recursive strategy of reducing metagenomic dataset's complexity.
    Jiang Z; Li X; Guo L
    BMC Bioinformatics; 2022 Jan; 22(Suppl 12):315. PubMed ID: 35045830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating metagenomics tools for genome binning with real metagenomic datasets and CAMI datasets.
    Yue Y; Huang H; Qi Z; Dou HM; Liu XY; Han TF; Chen Y; Song XJ; Zhang YH; Tu J
    BMC Bioinformatics; 2020 Jul; 21(1):334. PubMed ID: 32723290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 16S rRNA metagenome clustering and diversity estimation using locality sensitive hashing.
    Rasheed Z; Rangwala H; Barbará D
    BMC Syst Biol; 2013; 7 Suppl 4(Suppl 4):S11. PubMed ID: 24565031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CoMet: a workflow using contig coverage and composition for binning a metagenomic sample with high precision.
    Herath D; Tang SL; Tandon K; Ackland D; Halgamuge SK
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):571. PubMed ID: 29297295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale metagenomic sequence clustering on map-reduce clusters.
    Yang X; Zola J; Aluru S
    J Bioinform Comput Biol; 2013 Feb; 11(1):1340001. PubMed ID: 23427983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MetaDecoder: a novel method for clustering metagenomic contigs.
    Liu CC; Dong SS; Chen JB; Wang C; Ning P; Guo Y; Yang TL
    Microbiome; 2022 Mar; 10(1):46. PubMed ID: 35272700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Massive metagenomic data analysis using abundance-based machine learning.
    Harris ZN; Dhungel E; Mosior M; Ahn TH
    Biol Direct; 2019 Aug; 14(1):12. PubMed ID: 31370905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alignment-free supervised classification of metagenomes by recursive SVM.
    Cui H; Zhang X
    BMC Genomics; 2013 Sep; 14():641. PubMed ID: 24053649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MTR: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks.
    Gori F; Folino G; Jetten MS; Marchiori E
    Bioinformatics; 2011 Jan; 27(2):196-203. PubMed ID: 21127032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Unsupervised Binning Approach for Metagenomic Sequences Based on N-grams and Automatic Feature Weighting.
    Liao R; Zhang R; Guan J; Zhou S
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(1):42-54. PubMed ID: 26355506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating the composition of species in metagenomes by clustering of next-generation read sequences.
    Seok HS; Hong W; Kim J
    Methods; 2014 Oct; 69(3):213-9. PubMed ID: 25072168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and comparison of very large metagenomes with fast clustering and functional annotation.
    Li W
    BMC Bioinformatics; 2009 Oct; 10():359. PubMed ID: 19863816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.