These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1579 related articles for article (PubMed ID: 28981612)
1. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Schaefer A; Kong R; Gordon EM; Laumann TO; Zuo XN; Holmes AJ; Eickhoff SB; Yeo BTT Cereb Cortex; 2018 Sep; 28(9):3095-3114. PubMed ID: 28981612 [TBL] [Abstract][Full Text] [Related]
2. Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity. Yan X; Kong R; Xue A; Yang Q; Orban C; An L; Holmes AJ; Qian X; Chen J; Zuo XN; Zhou JH; Fortier MV; Tan AP; Gluckman P; Chong YS; Meaney MJ; Bzdok D; Eickhoff SB; Yeo BTT Neuroimage; 2023 Jun; 273():120010. PubMed ID: 36918136 [TBL] [Abstract][Full Text] [Related]
3. Individual-Specific Areal-Level Parcellations Improve Functional Connectivity Prediction of Behavior. Kong R; Yang Q; Gordon E; Xue A; Yan X; Orban C; Zuo XN; Spreng N; Ge T; Holmes A; Eickhoff S; Yeo BTT Cereb Cortex; 2021 Aug; 31(10):4477-4500. PubMed ID: 33942058 [TBL] [Abstract][Full Text] [Related]
4. Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. Blumensath T; Jbabdi S; Glasser MF; Van Essen DC; Ugurbil K; Behrens TE; Smith SM Neuroimage; 2013 Aug; 76():313-24. PubMed ID: 23523803 [TBL] [Abstract][Full Text] [Related]
5. Handedness-dependent functional organizational patterns within the bilateral vestibular cortical network revealed by fMRI connectivity based parcellation. Kirsch V; Boegle R; Keeser D; Kierig E; Ertl-Wagner B; Brandt T; Dieterich M Neuroimage; 2018 Sep; 178():224-237. PubMed ID: 29787866 [TBL] [Abstract][Full Text] [Related]
6. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data. James GA; Hazaroglu O; Bush KA Magn Reson Imaging; 2016 Feb; 34(2):209-18. PubMed ID: 26523655 [TBL] [Abstract][Full Text] [Related]
7. Robust brain parcellation using sparse representation on resting-state fMRI. Zhang Y; Caspers S; Fan L; Fan Y; Song M; Liu C; Mo Y; Roski C; Eickhoff S; Amunts K; Jiang T Brain Struct Funct; 2015 Nov; 220(6):3565-79. PubMed ID: 25156576 [TBL] [Abstract][Full Text] [Related]
8. Joint Spectral Decomposition for the Parcellation of the Human Cerebral Cortex Using Resting-State fMRI. Arslan S; Parisot S; Rueckert D Inf Process Med Imaging; 2015; 24():85-97. PubMed ID: 26221668 [TBL] [Abstract][Full Text] [Related]
9. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI. Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936 [TBL] [Abstract][Full Text] [Related]
10. Evaluating brain parcellations using the distance-controlled boundary coefficient. Zhi D; King M; Hernandez-Castillo CR; Diedrichsen J Hum Brain Mapp; 2022 Aug; 43(12):3706-3720. PubMed ID: 35451538 [TBL] [Abstract][Full Text] [Related]
11. Functional Parcellation of the Cerebral Cortex Across the Human Adult Lifespan. Han L; Savalia NK; Chan MY; Agres PF; Nair AS; Wig GS Cereb Cortex; 2018 Dec; 28(12):4403-4423. PubMed ID: 30307480 [TBL] [Abstract][Full Text] [Related]
12. Inferring Individual-Level Variations in the Functional Parcellation of the Cerebral Cortex. Nie L; Matthews PM; Guo Y IEEE Trans Biomed Eng; 2016 Dec; 63(12):2505-2517. PubMed ID: 27875122 [TBL] [Abstract][Full Text] [Related]
13. Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics. Fan L; Zhong Q; Qin J; Li N; Su J; Zeng LL; Hu D; Shen H Hum Brain Mapp; 2021 Apr; 42(5):1416-1433. PubMed ID: 33283954 [TBL] [Abstract][Full Text] [Related]
14. A flexible graphical model for multi-modal parcellation of the cortex. Parisot S; Glocker B; Ktena SI; Arslan S; Schirmer MD; Rueckert D Neuroimage; 2017 Nov; 162():226-248. PubMed ID: 28889005 [TBL] [Abstract][Full Text] [Related]
15. Using connectomics for predictive assessment of brain parcellations. Albers KJ; Ambrosen KS; Liptrot MG; Dyrby TB; Schmidt MN; Mørup M Neuroimage; 2021 Sep; 238():118170. PubMed ID: 34087365 [TBL] [Abstract][Full Text] [Related]
16. Fine-grained functional parcellation maps of the infant cerebral cortex. Wang F; Zhang H; Wu Z; Hu D; Zhou Z; Girault JB; Wang L; Lin W; Li G Elife; 2023 Aug; 12():. PubMed ID: 37526293 [TBL] [Abstract][Full Text] [Related]
17. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex. Arslan S; Ktena SI; Makropoulos A; Robinson EC; Rueckert D; Parisot S Neuroimage; 2018 Apr; 170():5-30. PubMed ID: 28412442 [TBL] [Abstract][Full Text] [Related]
18. Parcellation of the human amygdala using recurrence quantification analysis. Bielski K; Adamus S; Kolada E; Rączaszek-Leonardi J; Szatkowska I Neuroimage; 2021 Feb; 227():117644. PubMed ID: 33338610 [TBL] [Abstract][Full Text] [Related]
19. Graph Learning for Cortical Parcellation from Tensor Decompositions of Resting-State fMRI. Liu Y; Li J; Wisnowski JL; Leahy RM bioRxiv; 2024 Jan; ():. PubMed ID: 38260447 [TBL] [Abstract][Full Text] [Related]
20. sGraSP: A graph-based method for the derivation of subject-specific functional parcellations of the brain. Honnorat N; Satterthwaite TD; Gur RE; Gur RC; Davatzikos C J Neurosci Methods; 2017 Feb; 277():1-20. PubMed ID: 27913211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]