These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 28981773)
1. Evolutionarily distinct carotenoid cleavage dioxygenases are responsible for crocetin production in Buddleja davidii. Ahrazem O; Diretto G; Argandoña J; Rubio-Moraga Á; Julve JM; Orzáez D; Granell A; Gómez-Gómez L J Exp Bot; 2017 Jul; 68(16):4663-4677. PubMed ID: 28981773 [TBL] [Abstract][Full Text] [Related]
2. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme. Ahrazem O; Rubio-Moraga A; Berman J; Capell T; Christou P; Zhu C; Gómez-Gómez L New Phytol; 2016 Jan; 209(2):650-63. PubMed ID: 26377696 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of apocarotenoid modifiers and carotenogenic enzymes for biosynthesis of crocins in Buddleja davidii flowers. Diretto G; López-Jiménez AJ; Ahrazem O; Frusciante S; Song J; Rubio-Moraga Á; Gómez-Gómez L J Exp Bot; 2021 Apr; 72(8):3200-3218. PubMed ID: 33544822 [TBL] [Abstract][Full Text] [Related]
4. Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron. Ahrazem O; Rubio-Moraga A; Argandoña-Picazo J; Castillo R; Gómez-Gómez L Plant Mol Biol; 2016 Jun; 91(3):355-74. PubMed ID: 27071403 [TBL] [Abstract][Full Text] [Related]
5. A New Glycosyltransferase Enzyme from Family 91, UGT91P3, Is Responsible for the Final Glucosylation Step of Crocins in Saffron ( López-Jimenez AJ; Frusciante S; Niza E; Ahrazem O; Rubio-Moraga Á; Diretto G; Gómez-Gómez L Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445522 [TBL] [Abstract][Full Text] [Related]
6. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis. Frusciante S; Diretto G; Bruno M; Ferrante P; Pietrella M; Prado-Cabrero A; Rubio-Moraga A; Beyer P; Gomez-Gomez L; Al-Babili S; Giuliano G Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12246-51. PubMed ID: 25097262 [TBL] [Abstract][Full Text] [Related]
7. Efficient production of saffron crocins and picrocrocin in Nicotiana benthamiana using a virus-driven system. Martí M; Diretto G; Aragonés V; Frusciante S; Ahrazem O; Gómez-Gómez L; Daròs JA Metab Eng; 2020 Sep; 61():238-250. PubMed ID: 32629020 [TBL] [Abstract][Full Text] [Related]
8. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus. Rubio-Moraga A; Rambla JL; Fernández-de-Carmen A; Trapero-Mozos A; Ahrazem O; Orzáez D; Granell A; Gómez-Gómez L Plant Mol Biol; 2014 Nov; 86(4-5):555-69. PubMed ID: 25204497 [TBL] [Abstract][Full Text] [Related]
9. Verbascum species as a new source of saffron apocarotenoids and molecular tools for the biotechnological production of crocins and picrocrocin. Morote L; Rubio-Moraga Á; López Jiménez AJ; Aragonés V; Diretto G; Demurtas OC; Frusciante S; Ahrazem O; Daròs JA; Gómez-Gómez L Plant J; 2024 Apr; 118(1):58-72. PubMed ID: 38100533 [TBL] [Abstract][Full Text] [Related]
10. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. Zhang B; Liu C; Wang Y; Yao X; Wang F; Wu J; King GJ; Liu K New Phytol; 2015 Jun; 206(4):1513-26. PubMed ID: 25690717 [TBL] [Abstract][Full Text] [Related]
11. Expression and Interaction Analysis among Saffron ALDHs and Crocetin Dialdehyde. Gómez-Gómez L; Pacios LF; Diaz-Perales A; Garrido-Arandia M; Argandoña J; Rubio-Moraga Á; Ahrazem O Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29747375 [TBL] [Abstract][Full Text] [Related]
12. Gardenia carotenoid cleavage dioxygenase 4a is an efficient tool for biotechnological production of crocins in green and non-green plant tissues. Zheng X; Mi J; Balakrishna A; Liew KX; Ablazov A; Sougrat R; Al-Babili S Plant Biotechnol J; 2022 Nov; 20(11):2202-2216. PubMed ID: 35997958 [TBL] [Abstract][Full Text] [Related]
13. Liang N; Yao MD; Wang Y; Liu J; Feng L; Wang ZM; Li XY; Xiao WH; Yuan YJ J Agric Food Chem; 2021 Oct; 69(39):11626-11636. PubMed ID: 34554747 [TBL] [Abstract][Full Text] [Related]
14. Heterologous expression of Bixa orellana cleavage dioxygenase 4-3 drives crocin but not bixin biosynthesis. Frusciante S; Demurtas OC; Sulli M; Mini P; Aprea G; Diretto G; Karcher D; Bock R; Giuliano G Plant Physiol; 2022 Mar; 188(3):1469-1482. PubMed ID: 34919714 [TBL] [Abstract][Full Text] [Related]
15. Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Castillo R; Fernández JA; Gómez-Gómez L Plant Physiol; 2005 Oct; 139(2):674-89. PubMed ID: 16183835 [TBL] [Abstract][Full Text] [Related]
16. Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. Huang FC; Molnár P; Schwab W J Exp Bot; 2009; 60(11):3011-22. PubMed ID: 19436048 [TBL] [Abstract][Full Text] [Related]
17. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4. Watanabe K; Oda-Yamamizo C; Sage-Ono K; Ohmiya A; Ono M Transgenic Res; 2018 Feb; 27(1):25-38. PubMed ID: 29247330 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of carotenoid cleavage dioxygenase 4 genes from different citrus species. Zheng X; Xie Z; Zhu K; Xu Q; Deng X; Pan Z Mol Genet Genomics; 2015 Aug; 290(4):1589-603. PubMed ID: 25749981 [TBL] [Abstract][Full Text] [Related]
19. Characteristics of a new carotenoid cleavage dioxygenase NtCCD10 derived from Nicotiana tabacum. Li F; Gong X; Liang Y; Peng L; Han X; Wen M Planta; 2022 Oct; 256(5):100. PubMed ID: 36251100 [TBL] [Abstract][Full Text] [Related]
20. Apocarotenoids: A New Carotenoid-Derived Pathway. Beltran JC; Stange C Subcell Biochem; 2016; 79():239-72. PubMed ID: 27485225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]