These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28981787)

  • 1. The strength of plants: theory and experimental methods to measure the mechanical properties of stems.
    Shah DU; Reynolds TPS; Ramage MH
    J Exp Bot; 2017 Jul; 68(16):4497-4516. PubMed ID: 28981787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On measuring the bending strength of septate grass stems.
    Robertson DJ; Smith SL; Cook DD
    Am J Bot; 2015 Jan; 102(1):5-11. PubMed ID: 25587143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graviresponses in herb and trees: a major role for the redistribution of tissue and growth stresses.
    Hejnowicz Z
    Planta; 1997 Sep; 203(Suppl 1):S136-46. PubMed ID: 11540322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.
    Verhertbruggen Y; Marcus SE; Chen J; Knox JP
    Plant Cell Physiol; 2013 Aug; 54(8):1278-88. PubMed ID: 23695504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of multiscale structural parameters on the mechanical properties of rice stems.
    Huang J; Liu W; Zhou F; Peng Y
    J Mech Behav Biomed Mater; 2018 Jun; 82():239-247. PubMed ID: 29627735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of phyllotaxy on biomechanical properties of stems of Cercis occidentalis (Fabaceae).
    Caringella MA; Bergman BA; Stanfield RC; Ewers MM; Bobich EG; Ewers FW
    Am J Bot; 2014 Jan; 101(1):206-10. PubMed ID: 24375827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hierarchical structure and mechanics of plant materials.
    Gibson LJ
    J R Soc Interface; 2012 Nov; 9(76):2749-66. PubMed ID: 22874093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feeling stretched or compressed? The multiple mechanosensitive responses of wood formation to bending.
    Roignant J; Badel É; Leblanc-Fournier N; Brunel-Michac N; Ruelle J; Moulia B; Decourteix M
    Ann Bot; 2018 May; 121(6):1151-1161. PubMed ID: 29373642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the role of stress anisotropy in the growth of stems.
    Baskin TI; Jensen OE
    J Exp Bot; 2013 Nov; 64(15):4697-707. PubMed ID: 23913952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic behaviour of inflorescence-bearing Triticale and Triticum stems.
    Zebrowski J
    Planta; 1999 Jan; 207(3):410-7. PubMed ID: 11536897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees.
    Wang H; Jiang C; Wang C; Yang Y; Yang L; Gao X; Zhang H
    J Exp Bot; 2015 Mar; 66(5):1291-302. PubMed ID: 25428999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of calcium sprays on mechanical strength and cell wall fractions of herbaceous peony (Paeonia lactiflora pall.) inflorescence stems.
    Li C; Tao J; Zhao D; You C; Ge J
    Int J Mol Sci; 2012; 13(4):4704-4713. PubMed ID: 22606005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of wheat stems.
    Hamman KD; Williamson RL; Steffler ED; Wright CT; Hess JR; Pryfogle PA
    Appl Biochem Biotechnol; 2005; 121-124():71-80. PubMed ID: 15917588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-wall recovery after irreversible deformation of wood.
    Keckes J; Burgert I; Frühmann K; Müller M; Kölln K; Hamilton M; Burghammer M; Roth SV; Stanzl-Tschegg S; Fratzl P
    Nat Mater; 2003 Dec; 2(12):810-4. PubMed ID: 14625541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem extension and mechanical stability of Xanthium canadense grown in an open or in a dense stand.
    Watari R; Nagashima H; Hirose T
    Ann Bot; 2014 Jul; 114(1):179-90. PubMed ID: 24879768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary fate of phenotypic plasticity and functional traits under domestication in manioc: changes in stem biomechanics and the appearance of stem brittleness.
    Ménard L; McKey D; Mühlen GS; Clair B; Rowe NP
    PLoS One; 2013; 8(9):e74727. PubMed ID: 24023960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical adaptations of cleavers (Galium aparine).
    Goodman AM
    Ann Bot; 2005 Feb; 95(3):475-80. PubMed ID: 15574483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fasciclin-like arabinogalactan proteins: specialization for stem biomechanics and cell wall architecture in Arabidopsis and Eucalyptus.
    MacMillan CP; Mansfield SD; Stachurski ZH; Evans R; Southerton SG
    Plant J; 2010 May; 62(4):689-703. PubMed ID: 20202165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive spatiotemporal changes in morphology, anatomy, and mechanics during the ontogeny of subshrubs with square-shaped stems.
    Kaminski R; Speck T; Speck O
    Am J Bot; 2017 Aug; 104(8):1157-1167. PubMed ID: 28814404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining tensile testing and microscopy to address a diverse range of questions.
    Robinson S; Durand-Smet P
    J Microsc; 2020 Jun; 278(3):145-153. PubMed ID: 31943175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.