BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

429 related articles for article (PubMed ID: 28981825)

  • 1. The Influence of Sniffing on Airflow and Odorant Deposition in the Canine Nasal Cavity.
    Rygg AD; Van Valkenburgh B; Craven BA
    Chem Senses; 2017 Oct; 42(8):683-698. PubMed ID: 28981825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction.
    Lawson MJ; Craven BA; Paterson EG; Settles GS
    Chem Senses; 2012 Jul; 37(6):553-66. PubMed ID: 22473924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia.
    Craven BA; Paterson EG; Settles GS
    J R Soc Interface; 2010 Jun; 7(47):933-43. PubMed ID: 20007171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical modeling of turbulent and laminar airflow and odorant transport during sniffing in the human and rat nose.
    Zhao K; Dalton P; Yang GC; Scherer PW
    Chem Senses; 2006 Feb; 31(2):107-18. PubMed ID: 16354744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A numerical model of nasal odorant transport for the analysis of human olfaction.
    Keyhani K; Scherer PW; Mozell MM
    J Theor Biol; 1997 Jun; 186(3):279-301. PubMed ID: 9219668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nasal airflow rate affects the sensitivity and pattern of glomerular odorant responses in the mouse olfactory bulb.
    Oka Y; Takai Y; Touhara K
    J Neurosci; 2009 Sep; 29(39):12070-8. PubMed ID: 19793965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction.
    Zhao K; Scherer PW; Hajiloo SA; Dalton P
    Chem Senses; 2004 Jun; 29(5):365-79. PubMed ID: 15201204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of airway dimension effects on airflow patterns and odorant deposition patterns in the rat nasal cavity.
    Wei Z; Xu Z; Li B; Xu F
    PLoS One; 2013; 8(10):e77570. PubMed ID: 24204875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the location of nasal polyps on olfactory airflow and olfaction.
    Nishijima H; Kondo K; Yamamoto T; Nomura T; Kikuta S; Shimizu Y; Mizushima Y; Yamasoba T
    Int Forum Allergy Rhinol; 2018 Jun; 8(6):695-706. PubMed ID: 29394000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airflow and nanoparticle deposition in rat nose under various breathing and sniffing conditions: a computational evaluation of the unsteady effect.
    Jiang J; Zhao K
    J Aerosol Sci; 2010 Nov; 41(11):1030-1043. PubMed ID: 21076632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Middle Turbinectomy on Airflow to the Olfactory Cleft: A Computational Fluid Dynamics Study.
    Alam S; Li C; Bradburn KH; Zhao K; Lee TS
    Am J Rhinol Allergy; 2019 May; 33(3):263-268. PubMed ID: 30543120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling inspiratory and expiratory steady-state velocity fields in the Sprague-Dawley rat nasal cavity.
    Yang GC; Scherer PW; Mozell MM
    Chem Senses; 2007 Mar; 32(3):215-23. PubMed ID: 17220519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sniffing and spatiotemporal coding in olfaction.
    Scott JW
    Chem Senses; 2006 Feb; 31(2):119-30. PubMed ID: 16354743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anatomical contributions to odorant sampling and representation in rodents: zoning in on sniffing behavior.
    Schoenfeld TA; Cleland TA
    Chem Senses; 2006 Feb; 31(2):131-44. PubMed ID: 16339266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing the sorption hypothesis in olfaction: a limited role for sniff strength in shaping primary odor representations during behavior.
    Cenier T; McGann JP; Tsuno Y; Verhagen JV; Wachowiak M
    J Neurosci; 2013 Jan; 33(1):79-92. PubMed ID: 23283324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal processing of olfactory stimuli during retronasal perception.
    Wilkes FJ; Laing DG; Hutchinson I; Jinks AL; Monteleone E
    Behav Brain Res; 2009 Jun; 200(1):68-75. PubMed ID: 19162085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flow mechanisms in the human olfactory groove: numerical simulation of nasal physiological respiration during inspiration, expiration, and sniffing.
    Ishikawa S; Nakayama T; Watanabe M; Matsuzawa T
    Arch Otolaryngol Head Neck Surg; 2009 Feb; 135(2):156-62. PubMed ID: 19221243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyses on the influence of normal nasal morphological variations on odorant transport to the olfactory cleft.
    Sicard RM; Shah R; Frank-Ito DO
    Inhal Toxicol; 2022; 34(11-12):350-358. PubMed ID: 36045580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intranasal odorant concentrations in relation to sniff behavior.
    Beauchamp J; Scheibe M; Hummel T; Buettner A
    Chem Biodivers; 2014 Apr; 11(4):619-38. PubMed ID: 24706630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomical Details of the Rabbit Nasal Passages and Their Implications in Breathing, Air Conditioning, and Olfaction.
    Xi J; Si XA; Kim J; Zhang Y; Jacob RE; Kabilan S; Corley RA
    Anat Rec (Hoboken); 2016 Jul; 299(7):853-68. PubMed ID: 27145450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.