BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 28981887)

  • 1. Molecular mechanisms by which oxidative DNA damage promotes telomerase activity.
    Lee HT; Bose A; Lee CY; Opresko PL; Myong S
    Nucleic Acids Res; 2017 Nov; 45(20):11752-11765. PubMed ID: 28981887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Position-Dependent Effect of Guanine Base Damage and Mutations on Telomeric G-Quadruplex and Telomerase Extension.
    Lee HT; Sanford S; Paul T; Choe J; Bose A; Opresko PL; Myong S
    Biochemistry; 2020 Jul; 59(28):2627-2639. PubMed ID: 32578995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative guanine base damage plays a dual role in regulating productive ALT-associated homology-directed repair.
    Thosar SA; Barnes RP; Detwiler A; Bhargava R; Wondisford A; O'Sullivan RJ; Opresko PL
    Cell Rep; 2024 Jan; 43(1):113656. PubMed ID: 38194346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. POT1-TPP1 Binding and Unfolding of Telomere DNA Discriminates against Structural Polymorphism.
    Mullins MR; Rajavel M; Hernandez-Sanchez W; de la Fuente M; Biendarra SM; Harris ME; Taylor DJ
    J Mol Biol; 2016 Jul; 428(13):2695-708. PubMed ID: 27173378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific probing of oxidative reactivity and telomerase function using 7,8-dihydro-8-oxoguanine in telomeric DNA.
    Szalai VA; Singer MJ; Thorp HH
    J Am Chem Soc; 2002 Feb; 124(8):1625-31. PubMed ID: 11853436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative guanine base damage regulates human telomerase activity.
    Fouquerel E; Lormand J; Bose A; Lee HT; Kim GS; Li J; Sobol RW; Freudenthal BD; Myong S; Opresko PL
    Nat Struct Mol Biol; 2016 Dec; 23(12):1092-1100. PubMed ID: 27820808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Telomeric overhang length determines structural dynamics and accessibility to telomerase and ALT-associated proteins.
    Hwang H; Kreig A; Calvert J; Lormand J; Kwon Y; Daley JM; Sung P; Opresko PL; Myong S
    Structure; 2014 Jun; 22(6):842-53. PubMed ID: 24836024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The G-quadruplex-interactive molecule BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function.
    Burger AM; Dai F; Schultes CM; Reszka AP; Moore MJ; Double JA; Neidle S
    Cancer Res; 2005 Feb; 65(4):1489-96. PubMed ID: 15735037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro.
    Zaug AJ; Podell ER; Cech TR
    Proc Natl Acad Sci U S A; 2005 Aug; 102(31):10864-9. PubMed ID: 16043710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-quadruplex-mediated regulation of telomere binding protein POT1 gene expression.
    He Q; Zeng P; Tan JH; Ou TM; Gu LQ; Huang ZS; Li D
    Biochim Biophys Acta; 2014 Jul; 1840(7):2222-33. PubMed ID: 24631651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro.
    Kelleher C; Kurth I; Lingner J
    Mol Cell Biol; 2005 Jan; 25(2):808-18. PubMed ID: 15632080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule studies of physiologically relevant telomeric tails reveal POT1 mechanism for promoting G-quadruplex unfolding.
    Wang H; Nora GJ; Ghodke H; Opresko PL
    J Biol Chem; 2011 Mar; 286(9):7479-89. PubMed ID: 21183684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. c-Myc quadruplex-forming sequence Pu-27 induces extensive damage in both telomeric and nontelomeric regions of DNA.
    Islam MA; Thomas SD; Murty VV; Sedoris KJ; Miller DM
    J Biol Chem; 2014 Mar; 289(12):8521-31. PubMed ID: 24464582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the intramolecular G-quadruplex promoting activity of Est1.
    Li QJ; Tong XJ; Duan YM; Zhou JQ
    FEBS Lett; 2013 Mar; 587(6):659-65. PubMed ID: 23376615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forever Young: Structural Stability of Telomeric Guanine Quadruplexes in the Presence of Oxidative DNA Lesions*.
    Miclot T; Corbier C; Terenzi A; Hognon C; Grandemange S; Barone G; Monari A
    Chemistry; 2021 Jun; 27(34):8865-8874. PubMed ID: 33871121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CTC1-mediated C-strand fill-in is an essential step in telomere length maintenance.
    Feng X; Hsu SJ; Kasbek C; Chaiken M; Price CM
    Nucleic Acids Res; 2017 May; 45(8):4281-4293. PubMed ID: 28334750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Telomere DNA G-quadruplex folding within actively extending human telomerase.
    Jansson LI; Hentschel J; Parks JW; Chang TR; Lu C; Baral R; Bagshaw CR; Stone MD
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9350-9359. PubMed ID: 31019071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Helicase mediated vectorial folding of telomere G-quadruplex.
    Paul T; Myong S
    Methods Enzymol; 2022; 672():283-297. PubMed ID: 35934479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase.
    Ahmed W; Lingner J
    Genes Dev; 2018 May; 32(9-10):658-669. PubMed ID: 29773556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benzoindoloquinolines interact with DNA tetraplexes and inhibit telomerase.
    Alberti P; Schmitt P; Nguyen CH; Rivalle C; Hoarau M; Grierson DS; Mergny JL
    Bioorg Med Chem Lett; 2002 Apr; 12(7):1071-4. PubMed ID: 11909720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.