These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28981916)

  • 1. DEVELOPMENT OF A NEW DETECTOR SYSTEM TO EVALUATE POSITION AND ACTIVITY OF PLUTONIUM PARTICLES IN NASAL CAVITIES.
    Morishita Y; Yamamoto S; Momose T; Kaneko JH; Nemoto N
    Radiat Prot Dosimetry; 2018 Mar; 178(4):414-421. PubMed ID: 28981916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution of plutonium particles in the lungs of Mayak workers.
    Hahn FF; Romanov SA; Guilmette RA; Nifatov AP; Zaytseva YV; Diel JH; Allen SW; Lyovkina YV
    Radiat Prot Dosimetry; 2003; 105(1-4):81-4. PubMed ID: 14526932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of air monitoring and experimental aerosol data for intake assessment for Mayak plutonium workers.
    Zaytseva YV; Tretyakov FD; Romanov SA; Miller G; Bertelli L; Guilmette RA
    Radiat Prot Dosimetry; 2007; 127(1-4):535-9. PubMed ID: 17848389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid detection and size determination of PuO2 particles using a charged-particle imaging video monitor system.
    Iida T; Shimura H; Koizumi K
    Health Phys; 1990 Jan; 58(1):41-6. PubMed ID: 2294073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing instruments for measurement of plutonium activity in the environmental samples in the case of radiation accident.
    Bolyatko V; Goleminov N; Zvantsev A; Kramer-Ageev E; Mogilenets N; Troshin V
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):148-51. PubMed ID: 16604617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An improved method of nasal swab analysis for assessing alpha internal radioactive contaminants.
    Yunlong J; Dawei L; Decheng Q; Jing N
    J Radiol Prot; 2020 Mar; 40(1):270-279. PubMed ID: 31887728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifying the ICRP 66 dosimetry model based on results obtained from Mayak plutonium workers.
    Romanov SA; Guilmette RA; Hahn FF; Nifatov AP; Zaytseva YV; Lyovkina YV
    Radiat Prot Dosimetry; 2003; 105(1-4):85-90. PubMed ID: 14526933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a method of evaluating PuO2 particle diameters using an alpha-particle imaging detector.
    Morishita Y; Sagawa N; Takada C; Momose T; Takasaki K
    Radiat Prot Dosimetry; 2023 Aug; 199(13):1376-1383. PubMed ID: 37394946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two case studies of highly insoluble plutonium inhalation with implications for bioassay.
    Carbaugh EH; La Bone TR
    Radiat Prot Dosimetry; 2003; 105(1-4):133-8. PubMed ID: 14526943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radon-immune air monitor for plutonium.
    Gupton ED
    Health Phys; 1984 Jan; 46(1):217-24. PubMed ID: 6693243
    [No Abstract]   [Full Text] [Related]  

  • 11. Further evaluations of the toxicity of irradiated advanced heavy water reactor fuels.
    Edwards GW; Priest ND
    Health Phys; 2014 Nov; 107(5):417-34. PubMed ID: 25271932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ICP-MS based on-line monitoring of Pu-239 airborne concentration.
    Wang C; Zheng G; Pang H; Luo Z; Chen R; Hao W; Yin Y; Chen L; Wang Z; Liu R
    J Radiol Prot; 2020 Sep; 40(3):827-834. PubMed ID: 32544894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plutonium in the WIPP environment: its detection, distribution and behavior.
    Thakur P; Ballard S; Nelson R
    J Environ Monit; 2012 May; 14(6):1604-15. PubMed ID: 22549140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid Analysis of 239,238Pu, 241Am, and 90Sr for Nasal Smear Samples in Radiation Emergency and Evaluation of Intake Retention Fraction.
    Yoon S; Ha WH; Park S; Lee SS; Jin YW
    Health Phys; 2017 May; 112(5):451-457. PubMed ID: 28350699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new digital autoradiographical method for identification of Pu particles using an imaging plate.
    Koarashi J; Saito F; Akiyama K; Rahman NM; Iida T
    Appl Radiat Isot; 2007 Apr; 65(4):413-8. PubMed ID: 17035040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of plutonium isotopes (
    Shin C; Choi H; Kwon HM; Jo HJ; Kim HJ; Yoon HJ; Kim DS; Kang GJ
    J Environ Radioact; 2017 Oct; 177():151-157. PubMed ID: 28686943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Individual monitoring for internal contamination with plutonium compounds at JAEA-NCL.
    Kurihara O; Kanai K
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):144-7. PubMed ID: 21493601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A composite position independent monitor of reactor fuel irradiation using Pu, Cs, and Ba isotope ratios.
    Robel M; Isselhardt B; Ramon E; Hayes A; Gaffney A; Borg L; Lindvall R; Erickson A; Carney K; Battisti T; Conant A; Ade B; Trellue H; Weber C
    J Environ Radioact; 2018 Dec; 195():9-19. PubMed ID: 30237079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elemental bio-imaging of thorium, uranium, and plutonium in tissues from occupationally exposed former nuclear workers.
    Hare D; Tolmachev S; James A; Bishop D; Austin C; Fryer F; Doble P
    Anal Chem; 2010 Apr; 82(8):3176-82. PubMed ID: 20218581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying a low energy HPGe detector gamma ray spectrometric technique for the evaluation of Pu/Am ratio in biological samples.
    Singh IS; Mishra L; Yadav JR; Nadar MY; Rao DD; Pradeepkumar KS
    Appl Radiat Isot; 2015 Oct; 104():49-54. PubMed ID: 26141295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.