BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28982003)

  • 1. Glycopolymers Bearing Galactose and Betulin: Synthesis, Encapsulation, and Lectin Recognition.
    Ma Z; Jia YG; Zhu XX
    Biomacromolecules; 2017 Nov; 18(11):3812-3818. PubMed ID: 28982003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Core Cross-linked Micelles Made of Glycopolymers Bearing Dopamine and Cholic Acid Pendants.
    Ma Z; Zhu XX
    Mol Pharm; 2018 Jun; 15(6):2348-2354. PubMed ID: 29733653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the lectin recognition of glycopolymers via distance arrangement of sugar blocks.
    Jono K; Nagao M; Oh T; Sonoda S; Hoshino Y; Miura Y
    Chem Commun (Camb); 2017 Dec; 54(1):82-85. PubMed ID: 29211064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of molecular weight, compositions and lectin type on the properties of hyperbranched glycopolymers as non-viral gene delivery systems.
    Ahmed M; Narain R
    Biomaterials; 2012 May; 33(15):3990-4001. PubMed ID: 22386601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amphiphilic Diblock Terpolymer PMAgala-b-P(MAA-co-MAChol)s with Attached Galactose and Cholesterol Grafts and Their Intracellular pH-Responsive Doxorubicin Delivery.
    Wang Z; Luo T; Sheng R; Li H; Sun J; Cao A
    Biomacromolecules; 2016 Jan; 17(1):98-110. PubMed ID: 26682643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological Defects in Hyperbranched Glycopolymers Enhance Binding to Lectins.
    Salvadó M; Reina JJ; Rojo J; Castillón S; Boutureira O
    Chemistry; 2017 Nov; 23(62):15790-15794. PubMed ID: 28851127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH and glucose responsive nanofibers for the reversible capture and release of lectins.
    Wang Y; Kotsuchibashi Y; Uto K; Ebara M; Aoyagi T; Liu Y; Narain R
    Biomater Sci; 2015 Jan; 3(1):152-62. PubMed ID: 26214198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments.
    Giacomelli C; Le Men L; Borsali R; Lai-Kee-Him J; Brisson A; Armes SP; Lewis AL
    Biomacromolecules; 2006 Mar; 7(3):817-28. PubMed ID: 16529419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery.
    Suriano F; Pratt R; Tan JP; Wiradharma N; Nelson A; Yang YY; Dubois P; Hedrick JL
    Biomaterials; 2010 Mar; 31(9):2637-45. PubMed ID: 20074794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Block Copolymers Featuring Highly Photostable Photoacids Based on Vinylnaphthol: Synthesis and Self-Assembly.
    Wendler F; Tom JC; Sittig M; Biehl P; Dietzek B; Schacher FH
    Macromol Rapid Commun; 2020 Mar; 41(6):e1900607. PubMed ID: 32037620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of temperature and pH-responsive crosslinked micelles from polypeptide-based graft copolymer.
    Zhao C; He P; Xiao C; Gao X; Zhuang X; Chen X
    J Colloid Interface Sci; 2011 Jul; 359(2):436-42. PubMed ID: 21531426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copolymers containing carbohydrates and other biomolecules: design, synthesis and applications.
    Ma Z; Zhu XX
    J Mater Chem B; 2019 Mar; 7(9):1361-1378. PubMed ID: 32255007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermo-responsive drug release from self-assembled micelles of brush-like PLA/PEG analogues block copolymers.
    Hu Y; Darcos V; Monge S; Li S
    Int J Pharm; 2015 Aug; 491(1-2):152-61. PubMed ID: 26095914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of Ricinus communis agglutinin to a galactose-carrying polymer brush on a colloidal gold monolayer.
    Mizukami K; Takakura H; Matsunaga T; Kitano H
    Colloids Surf B Biointerfaces; 2008 Oct; 66(1):110-8. PubMed ID: 18614341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbohydrate-based amphiphilic diblock copolymers with pyridine for the sensitive detection of protein binding.
    Otsuka H; Hagiwara T; Yamamoto S
    J Nanosci Nanotechnol; 2014 Sep; 14(9):6764-73. PubMed ID: 25924328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and self-assembly of stimuli-responsive poly(2-(dimethylamino) ethyl methacrylate)-block-fullerene (PDMAEMA-b-C60) and the demicellization induced by free PDMAEMA chains.
    Yao ZL; Tam KC
    Langmuir; 2011 Jun; 27(11):6668-73. PubMed ID: 21568352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile and Efficient Preparation of Tri-component Fluorescent Glycopolymers via RAFT-controlled Polymerization.
    Wang W; Lester JM; Amorosa AE; Chance DL; Mossine VV; Mawhinney TP
    J Vis Exp; 2015 Jun; (100):e52922. PubMed ID: 26132587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrate-Conjugated Amino Acid-Based Fluorescent Block Copolymers: Their Self-Assembly, pH Responsiveness, and/or Lectin Recognition.
    Kumar S; Maiti B; De P
    Langmuir; 2015 Sep; 31(34):9422-31. PubMed ID: 26259117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release.
    Qiao ZY; Ji R; Huang XN; Du FS; Zhang R; Liang DH; Li ZC
    Biomacromolecules; 2013 May; 14(5):1555-63. PubMed ID: 23570500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.
    Zhao J; Wang H; Liu J; Deng L; Liu J; Dong A; Zhang J
    Biomacromolecules; 2013 Nov; 14(11):3973-84. PubMed ID: 24107101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.