These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 28982076)
21. Modeling daily water temperature for rivers: comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models. Zhu S; Heddam S; Nyarko EK; Hadzima-Nyarko M; Piccolroaz S; Wu S Environ Sci Pollut Res Int; 2019 Jan; 26(1):402-420. PubMed ID: 30406582 [TBL] [Abstract][Full Text] [Related]
22. Comparison of the performance of decision tree (DT) algorithms and extreme learning machine (ELM) model in the prediction of water quality of the Upper Green River watershed. Anmala J; Turuganti V Water Environ Res; 2021 Nov; 93(11):2360-2373. PubMed ID: 34528328 [TBL] [Abstract][Full Text] [Related]
23. Random forest, support vector machine, and neural networks to modelling suspended sediment in Tigris River-Baghdad. Al-Mukhtar M Environ Monit Assess; 2019 Oct; 191(11):673. PubMed ID: 31650261 [TBL] [Abstract][Full Text] [Related]
24. Predicting in-stream water quality constituents at the watershed scale using machine learning. Adedeji IC; Ahmadisharaf E; Sun Y J Contam Hydrol; 2022 Dec; 251():104078. PubMed ID: 36206579 [TBL] [Abstract][Full Text] [Related]
25. Spatio-temporal patterns of soil erosion and suspended sediment dynamics in the Mekong River Basin. Suif Z; Fleifle A; Yoshimura C; Saavedra O Sci Total Environ; 2016 Oct; 568():933-945. PubMed ID: 27338846 [TBL] [Abstract][Full Text] [Related]
26. Seminal quality prediction using data mining methods. Sahoo AJ; Kumar Y Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862 [TBL] [Abstract][Full Text] [Related]
27. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. Zeiger SJ; Hubbart JA Sci Total Environ; 2016 Dec; 572():232-243. PubMed ID: 27501422 [TBL] [Abstract][Full Text] [Related]
28. Decision Tree-Based Classifier Combined with Neural-Based Predictor for Water-Stage Forecasts in a River Basin During Typhoons: A Case Study in Taiwan. Tsai CC; Lu MC; Wei CC Environ Eng Sci; 2012 Feb; 29(2):108-116. PubMed ID: 22479147 [TBL] [Abstract][Full Text] [Related]
29. Predicting evaporation with optimized artificial neural network using multi-objective salp swarm algorithm. Ehteram M; Panahi F; Ahmed AN; Huang YF; Kumar P; Elshafie A Environ Sci Pollut Res Int; 2022 Feb; 29(7):10675-10701. PubMed ID: 34528189 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of stream water quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake. Ayana EK; Worqlul AW; Steenhuis TS Sci Total Environ; 2015 Aug; 523():170-7. PubMed ID: 25863508 [TBL] [Abstract][Full Text] [Related]
31. Hybrid wavelet-support vector machine approach for modelling rainfall-runoff process. Komasi M; Sharghi S Water Sci Technol; 2016; 73(8):1937-53. PubMed ID: 27120649 [TBL] [Abstract][Full Text] [Related]
32. Modeling forest management effects on water and sediment yield from nested, paired watersheds in the interior Pacific Northwest, USA using WEPP. Srivastava A; Brooks ES; Dobre M; Elliot WJ; Wu JQ; Flanagan DC; Gravelle JA; Link TE Sci Total Environ; 2020 Jan; 701():134877. PubMed ID: 31731205 [TBL] [Abstract][Full Text] [Related]
33. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Rajaee T; Mirbagheri SA; Zounemat-Kermani M; Nourani V Sci Total Environ; 2009 Aug; 407(17):4916-27. PubMed ID: 19520419 [TBL] [Abstract][Full Text] [Related]
34. Comparing linear and non-linear data-driven approaches in monthly river flow prediction, based on the models SARIMA, LSSVM, ANFIS, and GMDH. Khodakhah H; Aghelpour P; Hamedi Z Environ Sci Pollut Res Int; 2022 Mar; 29(15):21935-21954. PubMed ID: 34773585 [TBL] [Abstract][Full Text] [Related]
35. Development of river ecosystem models for Flemish watercourses: case studies in the Zwalm river basin. Goethals P; Dedecker A; Raes N; Adriaenssens V; Gabriels W; De Pauw N Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(1):71-86. PubMed ID: 15952431 [TBL] [Abstract][Full Text] [Related]
36. Comparative analysis of discharge and sediment flux from two contiguous glacierized basins of Central Himalaya, India. Chauhan P; Sharma J; Bhardwaj P; Mehta M; Shah RA; Singh O; Sain K Environ Monit Assess; 2023 May; 195(6):729. PubMed ID: 37227511 [TBL] [Abstract][Full Text] [Related]
37. Real-time prediction of river chloride concentration using ensemble learning. Zhang Q; Li Z; Zhu L; Zhang F; Sekerinski E; Han JC; Zhou Y Environ Pollut; 2021 Dec; 291():118116. PubMed ID: 34537597 [TBL] [Abstract][Full Text] [Related]
38. Estimating streamflow of the Kızılırmak River, Turkey with single- and multi-station datasets using Random Forests. Dogan MS Water Sci Technol; 2023 Jun; 87(11):2742-2755. PubMed ID: 37318921 [TBL] [Abstract][Full Text] [Related]
39. Modeling sediment and nitrogen export from a rural watershed in eastern Canada using the soil and water assessment tool. Nafees Ahmad HM; Sinclair A; Jamieson R; Madani A; Hebb D; Havard P; Yiridoe EK J Environ Qual; 2011; 40(4):1182-94. PubMed ID: 21712588 [TBL] [Abstract][Full Text] [Related]
40. Physics-informed machine learning algorithms for forecasting sediment yield: an analysis of physical consistency, sensitivity, and interpretability. El Bilali A; Brouziyne Y; Attar O; Lamane H; Hadri A; Taleb A Environ Sci Pollut Res Int; 2024 Jul; 31(34):47237-47257. PubMed ID: 38987519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]