These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 28982212)
1. Differences in osmotic adjustment, foliar abscisic acid dynamics, and stomatal regulation between an isohydric and anisohydric woody angiosperm during drought. Nolan RH; Tarin T; Santini NS; McAdam SAM; Ruman R; Eamus D Plant Cell Environ; 2017 Dec; 40(12):3122-3134. PubMed ID: 28982212 [TBL] [Abstract][Full Text] [Related]
2. Ethylene, not ABA, is closely linked to the recovery of gas exchange after drought in four Caragana species. Yao GQ; Li FP; Nie ZF; Bi MH; Jiang H; Liu XD; Wei Y; Fang XW Plant Cell Environ; 2021 Feb; 44(2):399-411. PubMed ID: 33131059 [TBL] [Abstract][Full Text] [Related]
3. Does the turgor loss point characterize drought response in dryland plants? Farrell C; Szota C; Arndt SK Plant Cell Environ; 2017 Aug; 40(8):1500-1511. PubMed ID: 28342210 [TBL] [Abstract][Full Text] [Related]
4. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Garcia-Forner N; Adams HD; Sevanto S; Collins AD; Dickman LT; Hudson PJ; Zeppel MJ; Jenkins MW; Powers H; Martínez-Vilalta J; Mcdowell NG Plant Cell Environ; 2016 Jan; 39(1):38-49. PubMed ID: 26081870 [TBL] [Abstract][Full Text] [Related]
5. Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric-anisohydric spectrum. Chen Z; Zhang Y; Yuan W; Zhu S; Pan R; Wan X; Liu S Tree Physiol; 2021 Sep; 41(9):1601-1610. PubMed ID: 33693879 [TBL] [Abstract][Full Text] [Related]
6. Abscisic acid mediates a divergence in the drought response of two conifers. Brodribb TJ; McAdam SA Plant Physiol; 2013 Jul; 162(3):1370-7. PubMed ID: 23709665 [TBL] [Abstract][Full Text] [Related]
7. Most stomatal closure in woody species under moderate drought can be explained by stomatal responses to leaf turgor. Rodriguez-Dominguez CM; Buckley TN; Egea G; de Cires A; Hernandez-Santana V; Martorell S; Diaz-Espejo A Plant Cell Environ; 2016 Sep; 39(9):2014-26. PubMed ID: 27255698 [TBL] [Abstract][Full Text] [Related]
8. Stomatal responses in grapevine become increasingly more tolerant to low water potentials throughout the growing season. Herrera JC; Calderan A; Gambetta GA; Peterlunger E; Forneck A; Sivilotti P; Cochard H; Hochberg U Plant J; 2022 Feb; 109(4):804-815. PubMed ID: 34797611 [TBL] [Abstract][Full Text] [Related]
9. Isohydric species are not necessarily more carbon limited than anisohydric species during drought. Garcia-Forner N; Biel C; Savé R; Martínez-Vilalta J Tree Physiol; 2017 Apr; 37(4):441-455. PubMed ID: 27885172 [TBL] [Abstract][Full Text] [Related]
10. Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: biosynthesis and function of ABA in stress responses. Gallé Á; Csiszár J; Benyó D; Laskay G; Leviczky T; Erdei L; Tari I J Plant Physiol; 2013 Nov; 170(16):1389-99. PubMed ID: 23702247 [TBL] [Abstract][Full Text] [Related]
11. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014 [TBL] [Abstract][Full Text] [Related]
12. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory. Novick KA; Miniat CF; Vose JM Plant Cell Environ; 2016 Mar; 39(3):583-96. PubMed ID: 26466749 [TBL] [Abstract][Full Text] [Related]
13. Hormonal dynamics contributes to divergence in seasonal stomatal behaviour in a monsoonal plant community. McAdam SA; Brodribb TJ Plant Cell Environ; 2015 Mar; 38(3):423-32. PubMed ID: 24995884 [TBL] [Abstract][Full Text] [Related]
14. Relationships between stomatal behavior, xylem vulnerability to cavitation and leaf water relations in two cultivars of Vitis vinifera. Tombesi S; Nardini A; Farinelli D; Palliotti A Physiol Plant; 2014 Nov; 152(3):453-64. PubMed ID: 24597791 [TBL] [Abstract][Full Text] [Related]
15. Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Martínez-Vilalta J; Garcia-Forner N Plant Cell Environ; 2017 Jun; 40(6):962-976. PubMed ID: 27739594 [TBL] [Abstract][Full Text] [Related]
17. How does leaf succulence relate to plant drought resistance in woody shrubs? Guo B; Arndt SK; Miller RE; Szota C; Farrell C Tree Physiol; 2023 Sep; 43(9):1501-1513. PubMed ID: 37208014 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought. Yi K; Dragoni D; Phillips RP; Roman DT; Novick KA Tree Physiol; 2017 Oct; 37(10):1379-1392. PubMed ID: 28062727 [TBL] [Abstract][Full Text] [Related]
19. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status. Meinzer FC; Smith DD; Woodruff DR; Marias DE; McCulloh KA; Howard AR; Magedman AL Plant Cell Environ; 2017 Aug; 40(8):1618-1628. PubMed ID: 28426140 [TBL] [Abstract][Full Text] [Related]
20. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. Blackman CJ; Creek D; Maier C; Aspinwall MJ; Drake JE; Pfautsch S; O'Grady A; Delzon S; Medlyn BE; Tissue DT; Choat B Tree Physiol; 2019 Jun; 39(6):910-924. PubMed ID: 30865274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]