These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
477 related articles for article (PubMed ID: 28982212)
21. Aridity-dependent sequence of water potentials for stomatal closure and hydraulic dysfunctions in woody plants. Jin Y; Hao G; Hammond WM; Yu K; Liu X; Ye Q; Zhou Z; Wang C Glob Chang Biol; 2023 Apr; 29(7):2030-2040. PubMed ID: 36655297 [TBL] [Abstract][Full Text] [Related]
23. Maturation of Atriplex halimus L. leaves involves changes in the molecular regulation of stomatal conductance under high evaporative demand and high but not low soil water content. Nada RM; Khedr AHA; Serag MS; El-Qashlan NR; Abogadallah GM Planta; 2018 Oct; 248(4):795-812. PubMed ID: 29923138 [TBL] [Abstract][Full Text] [Related]
24. Characterizing the breakpoint of stomatal response to vapor pressure deficit in an angiosperm. Binstock BR; Manandhar A; McAdam SAM Plant Physiol; 2024 Jan; 194(2):732-740. PubMed ID: 37850913 [TBL] [Abstract][Full Text] [Related]
25. Examining physiological, water relations, and hydraulic vulnerability traits to determine anisohydric and isohydric behavior in almond ( Álvarez-Maldini C; Acevedo M; Estay D; Aros F; Dumroese RK; Sandoval S; Pinto M Front Plant Sci; 2022; 13():974050. PubMed ID: 36092408 [TBL] [Abstract][Full Text] [Related]
26. Linking Turgor with ABA Biosynthesis: Implications for Stomatal Responses to Vapor Pressure Deficit across Land Plants. McAdam SA; Brodribb TJ Plant Physiol; 2016 Jul; 171(3):2008-16. PubMed ID: 27208264 [TBL] [Abstract][Full Text] [Related]
27. Strategies of a Bornean tropical rainforest water use as a function of rainfall regime: isohydric or anisohydric? Kumagai T; Porporato A Plant Cell Environ; 2012 Jan; 35(1):61-71. PubMed ID: 21933196 [TBL] [Abstract][Full Text] [Related]
28. Species climate range influences hydraulic and stomatal traits in Eucalyptus species. Bourne AE; Creek D; Peters JMR; Ellsworth DS; Choat B Ann Bot; 2017 Jul; 120(1):123-133. PubMed ID: 28369162 [TBL] [Abstract][Full Text] [Related]
29. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Tombesi S; Nardini A; Frioni T; Soccolini M; Zadra C; Farinelli D; Poni S; Palliotti A Sci Rep; 2015 Jul; 5():12449. PubMed ID: 26207993 [TBL] [Abstract][Full Text] [Related]
30. Significant contribution from foliage-derived ABA in regulating gas exchange in Pinus radiata. Mitchell PJ; McAdam SA; Pinkard EA; Brodribb TJ Tree Physiol; 2017 Feb; 37(2):236-245. PubMed ID: 28399262 [TBL] [Abstract][Full Text] [Related]
31. Signal coordination before, during and after stomatal closure in response to drought stress. Huber AE; Melcher PJ; Piñeros MA; Setter TL; Bauerle TL New Phytol; 2019 Oct; 224(2):675-688. PubMed ID: 31364171 [TBL] [Abstract][Full Text] [Related]
32. Growth and physiological responses of isohydric and anisohydric poplars to drought. Attia Z; Domec JC; Oren R; Way DA; Moshelion M J Exp Bot; 2015 Jul; 66(14):4373-81. PubMed ID: 25954045 [TBL] [Abstract][Full Text] [Related]
33. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? Aliniaeifard S; Malcolm Matamoros P; van Meeteren U Physiol Plant; 2014 Dec; 152(4):688-99. PubMed ID: 24773210 [TBL] [Abstract][Full Text] [Related]
34. Stomatal behaviour and stem xylem traits are coordinated for woody plant species under exceptional drought conditions. Pivovaroff AL; Cook VMW; Santiago LS Plant Cell Environ; 2018 Nov; 41(11):2617-2626. PubMed ID: 29904932 [TBL] [Abstract][Full Text] [Related]
35. Extreme drought can deactivate ABA biosynthesis in embolism-resistant species. Mercado-Reyes JA; Pereira TS; Manandhar A; Rimer IM; McAdam SAM Plant Cell Environ; 2024 Feb; 47(2):497-510. PubMed ID: 37905689 [TBL] [Abstract][Full Text] [Related]
36. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Shatil-Cohen A; Attia Z; Moshelion M Plant J; 2011 Jul; 67(1):72-80. PubMed ID: 21401747 [TBL] [Abstract][Full Text] [Related]
37. Below versus above Ground Plant Sources of Abscisic Acid (ABA) at the Heart of Tropical Forest Response to Warming. Sampaio Filho IJ; Jardine KJ; de Oliveira RCA; Gimenez BO; Cobello LO; Piva LRO; Candido LA; Higuchi N; Chambers JQ Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30002274 [TBL] [Abstract][Full Text] [Related]
38. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. Eller CB; Lima AL; Oliveira RS New Phytol; 2016 Jul; 211(2):489-501. PubMed ID: 27038126 [TBL] [Abstract][Full Text] [Related]
39. The dual effect of abscisic acid on stomata. Pantin F; Monnet F; Jannaud D; Costa JM; Renaud J; Muller B; Simonneau T; Genty B New Phytol; 2013 Jan; 197(1):65-72. PubMed ID: 23106390 [TBL] [Abstract][Full Text] [Related]
40. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Roman DT; Novick KA; Brzostek ER; Dragoni D; Rahman F; Phillips RP Oecologia; 2015 Nov; 179(3):641-54. PubMed ID: 26130023 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]