These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 28982238)
1. Carbon Kinetic Isotope Effects and the Mechanisms of Acid-Catalyzed Decarboxylation of 2,4-Dimethoxybenzoic Acid and CO Vandersteen AA; Howe GW; Sherwood Lollar B; Kluger R J Am Chem Soc; 2017 Oct; 139(42):15049-15053. PubMed ID: 28982238 [TBL] [Abstract][Full Text] [Related]
2. How Acid-Catalyzed Decarboxylation of 2,4-Dimethoxybenzoic Acid Avoids Formation of Protonated CO2. Howe GW; Vandersteen AA; Kluger R J Am Chem Soc; 2016 Jun; 138(24):7568-73. PubMed ID: 27241436 [TBL] [Abstract][Full Text] [Related]
3. Carbon kinetic isotope effects reveal variations in reactivity of intermediates in the formation of protonated carbonic acid. Vandersteen AA; Mundle SO; Lacrampe-Couloume G; Sherwood Lollar B; Kluger R J Org Chem; 2013 Dec; 78(23):12176-81. PubMed ID: 24256305 [TBL] [Abstract][Full Text] [Related]
4. Decarboxylation, CO2 and the reversion problem. Kluger R Acc Chem Res; 2015 Nov; 48(11):2843-9. PubMed ID: 26528892 [TBL] [Abstract][Full Text] [Related]
5. Internal return of carbon dioxide in decarboxylation: catalysis of separation and 12C/13C kinetic isotope effects. Mundle SO; Rathgeber S; Lacrampe-Couloume G; Sherwood Lollar B; Kluger R J Am Chem Soc; 2009 Aug; 131(33):11638-9. PubMed ID: 19642680 [TBL] [Abstract][Full Text] [Related]
6. Hydrolytic decarboxylation of carboxylic acids and the formation of protonated carbonic acid. Mundle SO; Lacrampe-Couloume G; Lollar BS; Kluger R J Am Chem Soc; 2010 Feb; 132(7):2430-6. PubMed ID: 20121187 [TBL] [Abstract][Full Text] [Related]
7. Breaking bonds with electrons and protons. Models and examples. Costentin C; Robert M; Savéant JM; Tard C Acc Chem Res; 2014 Jan; 47(1):271-80. PubMed ID: 24016042 [TBL] [Abstract][Full Text] [Related]
8. Water- and acid-mediated excited-state intramolecular proton transfer and decarboxylation reactions of ketoprofen in water-rich and acidic aqueous solutions. Li MD; Yeung CS; Guan X; Ma J; Li W; Ma C; Phillips DL Chemistry; 2011 Sep; 17(39):10935-50. PubMed ID: 21850720 [TBL] [Abstract][Full Text] [Related]
9. Protonated carbonic acid and reactive intermediates in the acidic decarboxylation of indolecarboxylic acids. Vandersteen AA; Mundle SO; Kluger R J Org Chem; 2012 Aug; 77(15):6505-9. PubMed ID: 22804752 [TBL] [Abstract][Full Text] [Related]
10. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C-O bond in the catalyzed electrochemical reduction of CO2. Costentin C; Drouet S; Passard G; Robert M; Savéant JM J Am Chem Soc; 2013 Jun; 135(24):9023-31. PubMed ID: 23692448 [TBL] [Abstract][Full Text] [Related]
11. Elimination of water from the carboxyl group of GlyGlyH+. Balta B; Aviyente V; Lifshitz C J Am Soc Mass Spectrom; 2003 Oct; 14(10):1192-203. PubMed ID: 14530099 [TBL] [Abstract][Full Text] [Related]
12. Proton Transfer via π-Interactions from Pyridine Provides a Facilitated Route for Transfer of CO Zambri MA; Kluger R J Am Chem Soc; 2024 Jan; 146(2):1403-1409. PubMed ID: 38176895 [TBL] [Abstract][Full Text] [Related]
13. Decarboxylation via addition of water to a carboxyl group: acid catalysis of pyrrole-2-carboxylic acid. Mundle SO; Kluger R J Am Chem Soc; 2009 Aug; 131(33):11674-5. PubMed ID: 19645466 [TBL] [Abstract][Full Text] [Related]
14. 13C and 15N isotope effects for conversion of L-dihydroorotate to N-carbamyl-L-aspartate using dihydroorotase from hamster and Bacillus caldolyticus. Anderson MA; Cleland WW; Huang DT; Chan C; Shojaei M; Christopherson RI Biochemistry; 2006 Jun; 45(23):7132-9. PubMed ID: 16752903 [TBL] [Abstract][Full Text] [Related]
15. Chemical mechanism of homoisocitrate dehydrogenase from Saccharomyces cerevisiae. Lin Y; Volkman J; Nicholas KM; Yamamoto T; Eguchi T; Nimmo SL; West AH; Cook PF Biochemistry; 2008 Apr; 47(13):4169-80. PubMed ID: 18321070 [TBL] [Abstract][Full Text] [Related]
16. Heavy atom isotope effects on the reaction catalyzed by the oxalate decarboxylase from Bacillus subtilis. Reinhardt LA; Svedruzic D; Chang CH; Cleland WW; Richards NG J Am Chem Soc; 2003 Feb; 125(5):1244-52. PubMed ID: 12553826 [TBL] [Abstract][Full Text] [Related]
17. Collision-induced dissociation processes of protonated benzoic acid and related compounds: competitive generation of protonated carbon dioxide or protonated benzene. Xu S; Pavlov J; Attygalle AB J Mass Spectrom; 2017 Apr; 52(4):230-238. PubMed ID: 28171689 [TBL] [Abstract][Full Text] [Related]
18. Conversion of CO2 and C2H6 to propanoic acid over a Au-exchanged MCM-22 zeolite. Sangthong W; Probst M; Limtrakul J Chemphyschem; 2014 Feb; 15(3):514-20. PubMed ID: 24375933 [TBL] [Abstract][Full Text] [Related]
19. Characterization of fluxional hydrogen-bonded complexes of acetic acid and acetate by NMR: geometries and isotope and solvent effects. Tolstoy PM; Schah-Mohammedi P; Smirnov SN; Golubev NS; Denisov GS; Limbach HH J Am Chem Soc; 2004 May; 126(17):5621-34. PubMed ID: 15113234 [TBL] [Abstract][Full Text] [Related]
20. Transient-state kinetic analysis of the oxidative decarboxylation of D-malate catalyzed by tartrate dehydrogenase. Tipton PA Biochemistry; 1996 Mar; 35(9):3108-14. PubMed ID: 8608151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]