These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 28982282)

  • 1. Long Synfire Chains Emerge by Spike-Timing Dependent Plasticity Modulated by Population Activity.
    Weissenberger F; Meier F; Lengler J; Einarsson H; Steger A
    Int J Neural Syst; 2017 Dec; 27(8):1750044. PubMed ID: 28982282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiation decay of synapses and length distributions of synfire chains self-organized in recurrent neural networks.
    Miller A; Jin DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062716. PubMed ID: 24483495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of neural circuitry for precise temporal sequences through spontaneous activity, axon remodeling, and synaptic plasticity.
    Jun JK; Jin DZ
    PLoS One; 2007 Aug; 2(8):e723. PubMed ID: 17684568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns.
    Hosaka R; Araki O; Ikeguchi T
    Neural Comput; 2008 Feb; 20(2):415-35. PubMed ID: 18045011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons.
    Masquelier T
    Neuroscience; 2018 Oct; 389():133-140. PubMed ID: 28668487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of small-world structure in networks of spiking neurons through STDP plasticity.
    Basalyga G; Gleiser PM; Wennekers T
    Adv Exp Med Biol; 2011; 718():33-9. PubMed ID: 21744208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triphasic spike-timing-dependent plasticity organizes networks to produce robust sequences of neural activity.
    Waddington A; Appleby PA; De Kamps M; Cohen N
    Front Comput Neurosci; 2012; 6():88. PubMed ID: 23162457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling compositionality by dynamic binding of synfire chains.
    Abeles M; Hayon G; Lehmann D
    J Comput Neurosci; 2004; 17(2):179-201. PubMed ID: 15306739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-capacity embedding of synfire chains in a cortical network model.
    Trengove C; van Leeuwen C; Diesmann M
    J Comput Neurosci; 2013 Apr; 34(2):185-209. PubMed ID: 22878688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike propagation in driven chain networks with dominant global inhibition.
    Chang W; Jin DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051917. PubMed ID: 19518490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchrony detection and amplification by silicon neurons with STDP synapses.
    Bofill-i-petit A; Murray AF
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1296-304. PubMed ID: 15484902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shaping Neural Circuits by High Order Synaptic Interactions.
    Ravid Tannenbaum N; Burak Y
    PLoS Comput Biol; 2016 Aug; 12(8):e1005056. PubMed ID: 27517461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synconset waves and chains: spiking onsets in synchronous populations predict and are predicted by network structure.
    Raghavan M; Amrutur B; Narayanan R; Sikdar SK
    PLoS One; 2013; 8(10):e74910. PubMed ID: 24116018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity.
    Zou Q; Bornat Y; Saïghi S; Tomas J; Renaud S; Destexhe A
    Network; 2006 Sep; 17(3):211-33. PubMed ID: 17162612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of random external background stimulation on network synaptic stability after tetanization: a modeling study.
    Chao ZC; Bakkum DJ; Wagenaar DA; Potter SM
    Neuroinformatics; 2005; 3(3):263-80. PubMed ID: 16077162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity.
    Takahashi YK; Kori H; Masuda N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051904. PubMed ID: 19518477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.