These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 2898330)
1. Regiochemistry and substrate stereoselectivity of O-demethylation of verapamil in the presence of the microsomal fraction from rat and human liver. Nelson WL; Olsen LD; Beitner DB; Pallow RJ Drug Metab Dispos; 1988; 16(2):184-8. PubMed ID: 2898330 [TBL] [Abstract][Full Text] [Related]
2. Regiochemistry and enantioselectivity in the oxidative N-dealkylation of verapamil. Nelson WL; Olsen LD Drug Metab Dispos; 1988; 16(6):834-41. PubMed ID: 2907462 [TBL] [Abstract][Full Text] [Related]
3. Pathways of gallopamil metabolism. Regiochemistry and enantioselectivity of the O-demethylation processes. Mutlib AE; Nelson WL Drug Metab Dispos; 1990; 18(3):309-14. PubMed ID: 1974191 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of the enantioselective oxidative metabolism of metoprolol by verapamil in human liver microsomes. Kim M; Shen DD; Eddy AC; Nelson WL; Roskos LK Drug Metab Dispos; 1993; 21(2):309-17. PubMed ID: 8097702 [TBL] [Abstract][Full Text] [Related]
5. Influence of substrate configuration on chlorpheniramine N-demethylation by hepatic microsomes from rats, rabbits, and mice. Thompson JA; Shioshita GW Drug Metab Dispos; 1981; 9(1):5-9. PubMed ID: 6111432 [TBL] [Abstract][Full Text] [Related]
6. Biotransformation of 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075), a novel antimicrotubule agent, by mouse, rat, dog, and human liver microsomes. Yao HT; Wu YS; Chang YW; Hsieh HP; Chen WC; Lan SJ; Chen CT; Chao YS; Chang L; Sun HY; Yeh TK Drug Metab Dispos; 2007 Jul; 35(7):1042-9. PubMed ID: 17403915 [TBL] [Abstract][Full Text] [Related]
7. Regioselective and stereoselective oxidation of metoprolol and bufuralol catalyzed by microsomes containing cDNA-expressed human P4502D6. Mautz DS; Nelson WL; Shen DD Drug Metab Dispos; 1995 Apr; 23(4):513-7. PubMed ID: 7600921 [TBL] [Abstract][Full Text] [Related]
8. Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Busse D; Cosme J; Beaune P; Kroemer HK; Eichelbaum M Naunyn Schmiedebergs Arch Pharmacol; 1995 Dec; 353(1):116-21. PubMed ID: 8750925 [TBL] [Abstract][Full Text] [Related]
9. Pathways of gallopamil metabolism. Regiochemistry and enantioselectivity of the N-dealkylation processes. Mutlib AE; Nelson WL Drug Metab Dispos; 1990; 18(3):331-7. PubMed ID: 1974195 [TBL] [Abstract][Full Text] [Related]
10. In vitro identification of metabolites of verapamil in rat liver microsomes. Sun L; Zhang SQ; Zhong DF Acta Pharmacol Sin; 2004 Jan; 25(1):121-8. PubMed ID: 14704133 [TBL] [Abstract][Full Text] [Related]
11. Enantioselective N-oxygenation of verapamil by the hepatic flavin-containing monooxygenase. Cashman JR Mol Pharmacol; 1989 Sep; 36(3):497-503. PubMed ID: 2779529 [TBL] [Abstract][Full Text] [Related]
12. Pharmacokinetic interaction between verapamil and metoprolol in the dog. Stereochemical aspects. Murthy SS; Nelson WL; Shen DD; Power JM; Cahill CM; McLean AJ Drug Metab Dispos; 1991; 19(6):1093-100. PubMed ID: 1687016 [TBL] [Abstract][Full Text] [Related]
13. In vitro metabolism study of combretastatin A-4 in rat and human liver microsomes. Aprile S; Del Grosso E; Tron GC; Grosa G Drug Metab Dispos; 2007 Dec; 35(12):2252-61. PubMed ID: 17890446 [TBL] [Abstract][Full Text] [Related]
14. Effects of alpha-carbon substituents on the N-demethylation of N-methyl-2-phenethylamines by rat liver microsomes. Duncan JD; Hallström G; Paulsen-Sörman U; Lindeke B; Cho AK Drug Metab Dispos; 1983; 11(1):15-20. PubMed ID: 6132789 [TBL] [Abstract][Full Text] [Related]
15. Metabolic kinetics of pseudoracemic propranolol in human liver microsomes. Enantioselectivity and quinidine inhibition. Marathe PH; Shen DD; Nelson WL Drug Metab Dispos; 1994; 22(2):237-47. PubMed ID: 8013280 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of 2-amino-alpha-carboline. A food-borne heterocyclic amine mutagen and carcinogen by human and rodent liver microsomes and by human cytochrome P4501A2. Raza H; King RS; Squires RB; Guengerich FP; Miller DW; Freeman JP; Lang NP; Kadlubar FF Drug Metab Dispos; 1996 Apr; 24(4):395-400. PubMed ID: 8801053 [TBL] [Abstract][Full Text] [Related]
17. Stereo- and regioselectivity account for the diversity of dehydroepiandrosterone (DHEA) metabolites produced by liver microsomal cytochromes P450. Miller KK; Cai J; Ripp SL; Pierce WM; Rushmore TH; Prough RA Drug Metab Dispos; 2004 Mar; 32(3):305-13. PubMed ID: 14977864 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and identification of 3-(4-hydroxy-1-naphthoxy)lactic acid as a metabolite of propranolol in the rat, in man, and in the rat liver 9000 g supernatant fraction. Talaat RE; Nelson WL Drug Metab Dispos; 1986; 14(2):202-7. PubMed ID: 2870895 [TBL] [Abstract][Full Text] [Related]
19. A study on the metabolism of etoposide and possible interactions with antitumor or supporting agents by human liver microsomes. Kawashiro T; Yamashita K; Zhao XJ; Koyama E; Tani M; Chiba K; Ishizaki T J Pharmacol Exp Ther; 1998 Sep; 286(3):1294-300. PubMed ID: 9732391 [TBL] [Abstract][Full Text] [Related]
20. Species differential stereoselective oxidation of a methylsulfide metabolite of MK-0767 [(+/-)-5-[(2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethyl)phenyl]methyl]benzamide], a peroxisome proliferator-activated receptor dual agonist. Karanam BV; Welch CJ; Reddy VG; Chilenski J; Biba M; Vincent S Drug Metab Dispos; 2004 Oct; 32(10):1061-8. PubMed ID: 15229170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]