BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28983824)

  • 1. The potential future contribution of shipping to acidification of the Baltic Sea.
    Turner DR; Edman M; Gallego-Urrea JA; Claremar B; Hassellöv IM; Omstedt A; Rutgersson A
    Ambio; 2018 Apr; 47(3):368-378. PubMed ID: 28983824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of seawater scrubbing on a microplanktonic community during a summer-bloom in the Baltic Sea.
    Ytreberg E; Karlberg M; Hassellöv IM; Hedblom M; Nylund AT; Salo K; Imberg H; Turner D; Tripp L; Yong J; Wulff A
    Environ Pollut; 2021 Dec; 291():118251. PubMed ID: 34592329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shipborne nutrient dynamics and impact on the eutrophication in the Baltic Sea.
    Raudsepp U; Maljutenko I; Kõuts M; Granhag L; Wilewska-Bien M; Hassellöv IM; Eriksson KM; Johansson L; Jalkanen JP; Karl M; Matthias V; Moldanova J
    Sci Total Environ; 2019 Jun; 671():189-207. PubMed ID: 30928749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental impacts of grey water discharge from ships in the Baltic Sea.
    Ytreberg E; Eriksson M; Maljutenko I; Jalkanen JP; Johansson L; Hassellöv IM; Granhag L
    Mar Pollut Bull; 2020 Mar; 152():110891. PubMed ID: 32479276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small sea with high traffic - what is the biofouling potential of commercial ships in the Baltic Sea.
    Hegele-Drywa J; Normant-Saremba M; Wójcik-Fudalewska D
    Biofouling; 2024; 40(3-4):280-289. PubMed ID: 38742575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nutrient load from food waste generated onboard ships in the Baltic Sea.
    Wilewska-Bien M; Granhag L; Andersson K
    Mar Pollut Bull; 2016 Apr; 105(1):359-66. PubMed ID: 26992746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogeochemical control of the coupled CO2-O 2 system of the Baltic Sea: a review of the results of Baltic-C.
    Omstedt A; Humborg C; Pempkowiak J; Perttilä M; Rutgersson A; Schneider B; Smith B
    Ambio; 2014 Feb; 43(1):49-59. PubMed ID: 24414804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.
    Ülpre H; Eames I
    Mar Pollut Bull; 2014 Nov; 88(1-2):292-301. PubMed ID: 25284442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Costs and benefits of low-sulphur fuel standard for Baltic Sea shipping.
    Antturi J; Hänninen O; Jalkanen JP; Johansson L; Prank M; Sofiev M; Ollikainen M
    J Environ Manage; 2016 Dec; 184(Pt 2):431-440. PubMed ID: 27742151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling spatial dispersion of contaminants from shipping lanes in the Baltic Sea.
    Maljutenko I; Hassellöv IM; Eriksson M; Ytreberg E; Yngsell D; Johansson L; Jalkanen JP; Kõuts M; Kasemets ML; Moldanova J; Magnusson K; Raudsepp U
    Mar Pollut Bull; 2021 Dec; 173(Pt A):112985. PubMed ID: 34598094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of shipping on non-indigenous species in the Baltic Sea.
    Gren IM; Brutemark A; Jägerbrand A
    Sci Total Environ; 2022 May; 821():153465. PubMed ID: 35101491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk assessment of bilge water discharges in two Baltic shipping lanes.
    Magnusson K; Jalkanen JP; Johansson L; Smailys V; Telemo P; Winnes H
    Mar Pollut Bull; 2018 Jan; 126():575-584. PubMed ID: 28982478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the costs and environmental benefits of IMO regulations of ship-originated SOx and NOx emissions in the Baltic Sea.
    Repka S; Erkkilä-Välimäki A; Jonson JE; Posch M; Törrönen J; Jalkanen JP
    Ambio; 2021 Sep; 50(9):1718-1730. PubMed ID: 33677810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryptic species in marine polychaete and their independent introduction from North America to Europe.
    Bastrop R; Jürss K; Sturmbauer C
    Mol Biol Evol; 1998 Feb; 15(2):97-103. PubMed ID: 9491608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Riverine tot-P loading and seawater concentrations in the Baltic Sea during the 1970s to 2000-transfer function modelling based on the total runoff.
    Hänninen J; Vuorinen I
    Environ Monit Assess; 2015 Jun; 187(6):343. PubMed ID: 25963762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Valuating environmental impacts from ship emissions - The marine perspective.
    Ytreberg E; Åström S; Fridell E
    J Environ Manage; 2021 Mar; 282():111958. PubMed ID: 33461092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of scrubber washwater discharge on microplankton in the Baltic Sea.
    Ytreberg E; Hassellöv IM; Nylund AT; Hedblom M; Al-Handal AY; Wulff A
    Mar Pollut Bull; 2019 Aug; 145():316-324. PubMed ID: 31590793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in conditions of acoustic wave propagation in the Gdansk deep as an effect of climate changes in the Baltic Sea region.
    Grelowska G; Kozaczka E
    Mar Pollut Bull; 2020 Nov; 160():111660. PubMed ID: 33181937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monitoring biological effects of pollution in the Baltic Sea: neglected--but still wanted?
    Lehtonen KK; Schiedek D
    Mar Pollut Bull; 2006; 53(8-9):377-86. PubMed ID: 16413586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.
    Havenhand JN
    Ambio; 2012 Sep; 41(6):637-44. PubMed ID: 22926885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.