These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 28983923)

  • 1. The highs and lows of programmed cardiovascular disease by developmental hypoxia: studies in the chicken embryo.
    Itani N; Salinas CE; Villena M; Skeffington KL; Beck C; Villamor E; Blanco CE; Giussani DA
    J Physiol; 2018 Aug; 596(15):2991-3006. PubMed ID: 28983923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucocorticoid excess and the developmental origins of disease: two decades of testing the hypothesis--2012 Curt Richter Award Winner.
    Reynolds RM
    Psychoneuroendocrinology; 2013 Jan; 38(1):1-11. PubMed ID: 22998948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sildenafil therapy for fetal cardiovascular dysfunction during hypoxic development: studies in the chick embryo.
    Itani N; Skeffington KL; Beck C; Giussani DA
    J Physiol; 2017 Mar; 595(5):1563-1573. PubMed ID: 27861916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early-life glucocorticoid exposure: the hypothalamic-pituitary-adrenal axis, placental function, and long-term disease risk.
    Braun T; Challis JR; Newnham JP; Sloboda DM
    Endocr Rev; 2013 Dec; 34(6):885-916. PubMed ID: 23970762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex differences in early-life programming of the hypothalamic-pituitary-adrenal axis in humans suggest increased vulnerability in females: a systematic review.
    Carpenter T; Grecian SM; Reynolds RM
    J Dev Orig Health Dis; 2017 Apr; 8(2):244-255. PubMed ID: 28103963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucocorticoids and fetal programming part 1: Outcomes.
    Moisiadis VG; Matthews SG
    Nat Rev Endocrinol; 2014 Jul; 10(7):391-402. PubMed ID: 24863382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health.
    Argyraki M; Damdimopoulou P; Chatzimeletiou K; Grimbizis GF; Tarlatzis BC; Syrrou M; Lambropoulos A
    Hum Reprod Update; 2019 Nov; 25(6):777-801. PubMed ID: 31633761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic regulation by hypoxia, N-acetylcysteine and hydrogen sulphide of the fetal vasculature in growth restricted offspring: A study in humans and chicken embryos.
    Krause BJ; Paz AA; Garrud TAC; PeƱaloza E; Vega-Tapia F; Ford SG; Niu Y; Giussani DA
    J Physiol; 2024 Jul; ():. PubMed ID: 38985827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of nutrition in the development of the fetal cardiovascular system.
    Tappia PS; Gabriel CA
    Expert Rev Cardiovasc Ther; 2006 Mar; 4(2):211-25. PubMed ID: 16509817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of periconceptional undernutrition on the development of the hypothalamo-pituitary-adrenal axis: does the timing of parturition start at conception?
    MacLaughlin SM; McMillen IC
    Curr Drug Targets; 2007 Aug; 8(8):880-7. PubMed ID: 17691924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroendocrine control of maternal stress responses and fetal programming by stress in pregnancy.
    Brunton PJ; Russell JA
    Prog Neuropsychopharmacol Biol Psychiatry; 2011 Jul; 35(5):1178-91. PubMed ID: 21216265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prenatal Stress, Glucocorticoids, and Developmental Programming of the Stress Response.
    McGowan PO; Matthews SG
    Endocrinology; 2018 Jan; 159(1):69-82. PubMed ID: 29136116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prematurity and programming of cardiovascular disease risk: a future challenge for public health?
    Bayman E; Drake AJ; Piyasena C
    Arch Dis Child Fetal Neonatal Ed; 2014 Nov; 99(6):F510-4. PubMed ID: 25135955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of maternal exposure to social stress during pregnancy: consequences for mother and offspring.
    Brunton PJ
    Reproduction; 2013; 146(5):R175-89. PubMed ID: 23901130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction.
    Botting KJ; Skeffington KL; Niu Y; Allison BJ; Brain KL; Itani N; Beck C; Logan A; Murray AJ; Murphy MP; Giussani DA
    Sci Adv; 2020 Aug; 6(34):eabb1929. PubMed ID: 32875110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endocrine mechanisms of intrauterine programming.
    Fowden AL; Forhead AJ
    Reproduction; 2004 May; 127(5):515-26. PubMed ID: 15129007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypertension Programmed in Adult Hens by Isolated Effects of Developmental Hypoxia In Ovo.
    Skeffington KL; Beck C; Itani N; Niu Y; Shaw CJ; Giussani DA
    Hypertension; 2020 Aug; 76(2):533-544. PubMed ID: 32536277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embryonic cardioprotection by hydrogen sulphide: studies of isolated cardiac function and ischaemia-reperfusion injury in the chicken embryo.
    Hess RM; Niu Y; Garrud TAC; Botting KJ; Ford SG; Giussani DA
    J Physiol; 2020 Oct; 598(19):4197-4208. PubMed ID: 32705691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prenatal stress, development, health and disease risk: A psychobiological perspective-2015 Curt Richter Award Paper.
    Entringer S; Buss C; Wadhwa PD
    Psychoneuroendocrinology; 2015 Dec; 62():366-75. PubMed ID: 26372770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maternal adversity, glucocorticoids and programming of neuroendocrine function and behaviour.
    Owen D; Andrews MH; Matthews SG
    Neurosci Biobehav Rev; 2005 Apr; 29(2):209-26. PubMed ID: 15811494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.