BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28984181)

  • 1. Optimal choice of word length when comparing two Markov sequences using a χ
    Bai X; Tang K; Ren J; Waterman M; Sun F
    BMC Genomics; 2017 Oct; 18(Suppl 6):732. PubMed ID: 28984181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inference of Markovian properties of molecular sequences from NGS data and applications to comparative genomics.
    Ren J; Song K; Deng M; Reinert G; Cannon CH; Sun F
    Bioinformatics; 2016 Apr; 32(7):993-1000. PubMed ID: 26130573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New developments of alignment-free sequence comparison: measures, statistics and next-generation sequencing.
    Song K; Ren J; Reinert G; Deng M; Waterman MS; Sun F
    Brief Bioinform; 2014 May; 15(3):343-53. PubMed ID: 24064230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden Markov Models in Bioinformatics: SNV Inference from Next Generation Sequence.
    Bian J; Zhou X
    Methods Mol Biol; 2017; 1552():123-133. PubMed ID: 28224495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of evolutionary parameters using short, random and partial sequences from mixed samples of anonymous individuals.
    Wu SH; Rodrigo AG
    BMC Bioinformatics; 2015 Nov; 16():357. PubMed ID: 26536860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly-free genome comparison based on next-generation sequencing reads and variable length patterns.
    Comin M; Schimd M
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S1. PubMed ID: 25252700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of k-spectrum-based error correction methods for next-generation sequencing data analysis.
    Akogwu I; Wang N; Zhang C; Gong P
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):20. PubMed ID: 27461106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey and evaluations of histogram-based statistics in alignment-free sequence comparison.
    Luczak BB; James BT; Girgis HZ
    Brief Bioinform; 2019 Jul; 20(4):1222-1237. PubMed ID: 29220512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alignment-free sequence comparison based on next-generation sequencing reads.
    Song K; Ren J; Zhai Z; Liu X; Deng M; Sun F
    J Comput Biol; 2013 Feb; 20(2):64-79. PubMed ID: 23383994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of metagenomic samples using sequence signatures.
    Jiang B; Song K; Ren J; Deng M; Sun F; Zhang X
    BMC Genomics; 2012 Dec; 13():730. PubMed ID: 23268604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Markov model to improve word normalization algorithm for biological sequence comparison.
    Dai Q; Liu X; Yao Y; Zhao F
    Amino Acids; 2012 May; 42(5):1867-77. PubMed ID: 21505825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNVHMM: predicting single nucleotide variants from next generation sequencing.
    Bian J; Liu C; Wang H; Xing J; Kachroo P; Zhou X
    BMC Bioinformatics; 2013 Jul; 14():225. PubMed ID: 23855743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confidence intervals for Markov chain transition probabilities based on next generation sequencing reads data.
    Wan L; Kang X; Ren J; Sun F
    Quant Biol; 2020 Jul; 8(2):143-154. PubMed ID: 34262790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alignment-free Transcriptomic and Metatranscriptomic Comparison Using Sequencing Signatures with Variable Length Markov Chains.
    Liao W; Ren J; Wang K; Wang S; Zeng F; Wang Y; Sun F
    Sci Rep; 2016 Nov; 6():37243. PubMed ID: 27876823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Context Tree Inference Algorithm for Variable Length Markov Chain Model with Applications to Biological Sequence Analyses.
    An S; Ren J; Sun F; Wan L
    J Comput Biol; 2022 Aug; 29(8):839-856. PubMed ID: 35451885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Markov model plus k-word distributions: a synergy that produces novel statistical measures for sequence comparison.
    Dai Q; Yang Y; Wang T
    Bioinformatics; 2008 Oct; 24(20):2296-302. PubMed ID: 18710871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of k-tuple length on sample-comparison with high-throughput sequencing data.
    Wang Y; Lei X; Wang S; Wang Z; Song N; Zeng F; Chen T
    Biochem Biophys Res Commun; 2016 Jan; 469(4):1021-7. PubMed ID: 26721429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reads Binning Improves Alignment-Free Metagenome Comparison.
    Song K; Ren J; Sun F
    Front Genet; 2019; 10():1156. PubMed ID: 31824565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alignment-Free Sequence Analysis and Applications.
    Ren J; Bai X; Lu YY; Tang K; Wang Y; Reinert G; Sun F
    Annu Rev Biomed Data Sci; 2018 Jul; 1():93-114. PubMed ID: 31828235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAMBO-K: Rapid and Sensitive Removal of Background Sequences from Next Generation Sequencing Data.
    Tausch SH; Renard BY; Nitsche A; Dabrowski PW
    PLoS One; 2015; 10(9):e0137896. PubMed ID: 26379285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.