BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 28984182)

  • 1. Identification of genome-wide non-canonical spliced regions and analysis of biological functions for spliced sequences using Read-Split-Fly.
    Bai Y; Kinne J; Ding L; Rath EC; Cox A; Naidu SD
    BMC Bioinformatics; 2017 Oct; 18(Suppl 11):382. PubMed ID: 28984182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Read-Split-Run: an improved bioinformatics pipeline for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Kinne J; Donham B; Jiang F; Ding L; Hassler JR; Kaufman RJ
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):503. PubMed ID: 27556805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. U12DB: a database of orthologous U12-type spliceosomal introns.
    Alioto TS
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D110-5. PubMed ID: 17082203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of sequence features involved in the recognition of tandem splice sites.
    Bortfeldt R; Schindler S; Szafranski K; Schuster S; Holste D
    BMC Genomics; 2008 Apr; 9():202. PubMed ID: 18447903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational scan for U12-dependent introns in the human genome sequence.
    Levine A; Durbin R
    Nucleic Acids Res; 2001 Oct; 29(19):4006-13. PubMed ID: 11574683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive survey of non-canonical splice sites in the human transcriptome.
    Parada GE; Munita R; Cerda CA; Gysling K
    Nucleic Acids Res; 2014; 42(16):10564-78. PubMed ID: 25123659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative splicing and bioinformatic analysis of human U12-type introns.
    Chang WC; Chen YC; Lee KM; Tarn WY
    Nucleic Acids Res; 2007; 35(6):1833-41. PubMed ID: 17332017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ancient mechanism for splicing control: U11 snRNP as an activator of alternative splicing.
    Verbeeren J; Niemelä EH; Turunen JJ; Will CL; Ravantti JJ; Lührmann R; Frilander MJ
    Mol Cell; 2010 Mar; 37(6):821-33. PubMed ID: 20347424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New insights into minor splicing-a transcriptomic analysis of cells derived from TALS patients.
    Cologne A; Benoit-Pilven C; Besson A; Putoux A; Campan-Fournier A; Bober MB; De Die-Smulders CEM; Paulussen ADC; Pinson L; Toutain A; Roifman CM; Leutenegger AL; Mazoyer S; Edery P; Lacroix V
    RNA; 2019 Sep; 25(9):1130-1149. PubMed ID: 31175170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel bioinformatics method for identification of genome-wide non-canonical spliced regions using RNA-Seq data.
    Bai Y; Hassler J; Ziyar A; Li P; Wright Z; Menon R; Omenn GS; Cavalcoli JD; Kaufman RJ; Sartor MA
    PLoS One; 2014; 9(7):e100864. PubMed ID: 24991935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing.
    Melangath G; Sen T; Kumar R; Bawa P; Srinivasan S; Vijayraghavan U
    PLoS One; 2017; 12(12):e0188159. PubMed ID: 29236736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutational analysis of the U12-dependent branch site consensus sequence.
    Brock JE; Dietrich RC; Padgett RA
    RNA; 2008 Nov; 14(11):2430-9. PubMed ID: 18824513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expansion and transformation of the minor spliceosomal system in the slime mold Physarum polycephalum.
    Larue GE; Eliáš M; Roy SW
    Curr Biol; 2021 Jul; 31(14):3125-3131.e4. PubMed ID: 34015249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionarily conserved exon definition interactions with U11 snRNP mediate alternative splicing regulation on U11-48K and U11/U12-65K genes.
    Niemelä EH; Verbeeren J; Singha P; Nurmi V; Frilander MJ
    RNA Biol; 2015; 12(11):1256-64. PubMed ID: 26479860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Splicing of branchpoint-distant exons is promoted by Cactin, Tls1 and the ubiquitin-fold-activated Sde2.
    Anil AT; Choudhary K; Pandian R; Gupta P; Thakran P; Singh A; Sharma M; Mishra SK
    Nucleic Acids Res; 2022 Sep; 50(17):10000-10014. PubMed ID: 36095128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analyses supported by RNA-Seq reveal non-canonical splice sites in plant genomes.
    Pucker B; Brockington SF
    BMC Genomics; 2018 Dec; 19(1):980. PubMed ID: 30594132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of new branch points and unconventional introns in Saccharomyces cerevisiae.
    Gould GM; Paggi JM; Guo Y; Phizicky DV; Zinshteyn B; Wang ET; Gilbert WV; Gifford DK; Burge CB
    RNA; 2016 Oct; 22(10):1522-34. PubMed ID: 27473169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-Seq approach for accurate characterization of splicing efficiency of yeast introns.
    Xia X
    Methods; 2020 Apr; 176():25-33. PubMed ID: 30926533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using profiles based on nucleotide hydrophobicity to define essential regions for splicing.
    Boldina G; Ivashchenko A; Régnier M
    Int J Biol Sci; 2009; 5(1):13-9. PubMed ID: 19119309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary dynamics of U12-type spliceosomal introns.
    Lin CF; Mount SM; Jarmołowski A; Makałowski W
    BMC Evol Biol; 2010 Feb; 10():47. PubMed ID: 20163699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.