These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 28984391)
1. Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues. Hiller CJ; Stiebritz MT; Lee CC; Liedtke J; Hu Y Chemistry; 2017 Nov; 23(64):16152-16156. PubMed ID: 28984391 [TBL] [Abstract][Full Text] [Related]
2. Reactivity of [Fe Lee CC; Stiebritz MT; Hu Y Acc Chem Res; 2019 May; 52(5):1168-1176. PubMed ID: 30977994 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of the all-ferrous [4Fe-4S]0 form of the nitrogenase iron protein from Azotobacter vinelandii. Strop P; Takahara PM; Chiu H; Angove HC; Burgess BK; Rees DC Biochemistry; 2001 Jan; 40(3):651-6. PubMed ID: 11170381 [TBL] [Abstract][Full Text] [Related]
4. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Lanzilotta WN; Fisher K; Seefeldt LC Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547 [TBL] [Abstract][Full Text] [Related]
5. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction. Han J; Newton WE Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631 [TBL] [Abstract][Full Text] [Related]
6. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides. Ryle MJ; Seefeldt LC Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928 [TBL] [Abstract][Full Text] [Related]
7. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Lanzilotta WN; Seefeldt LC Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558 [TBL] [Abstract][Full Text] [Related]
8. Catalytic activities of NifEN: implications for nitrogenase evolution and mechanism. Hu Y; Yoshizawa JM; Fay AW; Lee CC; Wiig JA; Ribbe MW Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16962-6. PubMed ID: 19805110 [TBL] [Abstract][Full Text] [Related]
9. Docking and migration of carbon monoxide in nitrogenase: the case for gated pockets from infrared spectroscopy and molecular dynamics. Gee LB; Leontyev I; Stuchebrukhov A; Scott AD; Pelmenschikov V; Cramer SP Biochemistry; 2015 Jun; 54(21):3314-9. PubMed ID: 25919807 [TBL] [Abstract][Full Text] [Related]
10. Uncoupling binding of substrate CO from turnover by vanadium nitrogenase. Lee CC; Fay AW; Weng TC; Krest CM; Hedman B; Hodgson KO; Hu Y; Ribbe MW Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13845-9. PubMed ID: 26515097 [TBL] [Abstract][Full Text] [Related]
11. Redox properties and electron paramagnetic resonance spectroscopy of the transition state complex of Azotobacter vinelandii nitrogenase. Spee JH; Arendsen AF; Wassink H; Marritt SJ; Hagen WR; Haaker H FEBS Lett; 1998 Jul; 432(1-2):55-8. PubMed ID: 9710250 [TBL] [Abstract][Full Text] [Related]
12. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ; Fisher K; Kim CH; Newton WE Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864 [TBL] [Abstract][Full Text] [Related]
13. Catalytic formation of a nitrogenase iron-sulfur cluster. Zheng L; Dean DR J Biol Chem; 1994 Jul; 269(29):18723-6. PubMed ID: 8034623 [TBL] [Abstract][Full Text] [Related]
14. Investigation of CO binding and release from Mo-nitrogenase during catalytic turnover. Cameron LM; Hales BJ Biochemistry; 1998 Jun; 37(26):9449-56. PubMed ID: 9649328 [TBL] [Abstract][Full Text] [Related]
15. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein. Seefeldt LC Protein Sci; 1994 Nov; 3(11):2073-81. PubMed ID: 7703853 [TBL] [Abstract][Full Text] [Related]
16. Electron inventory, kinetic assignment (E(n)), structure, and bonding of nitrogenase turnover intermediates with C2H2 and CO. Lee HI; Sørlie M; Christiansen J; Yang TC; Shao J; Dean DR; Hales BJ; Hoffman BM J Am Chem Soc; 2005 Nov; 127(45):15880-90. PubMed ID: 16277531 [TBL] [Abstract][Full Text] [Related]
17. Protein dynamics and the all-ferrous [Fe4 S4 ] cluster in the nitrogenase iron protein. Tan ML; Perrin BS; Niu S; Huang Q; Ichiye T Protein Sci; 2016 Jan; 25(1):12-8. PubMed ID: 26271353 [TBL] [Abstract][Full Text] [Related]
18. Nitrogenase reactivity: effects of pH on substrate reduction and CO inhibition. Pham DN; Burgess BK Biochemistry; 1993 Dec; 32(49):13725-31. PubMed ID: 8257707 [TBL] [Abstract][Full Text] [Related]
19. The effect of the redox potential on the activity of the nitrogenase and on the Fe-protein of Azotobacter vinelandii. Braaksma A; Haaker H; Grande HJ; Veeger C Eur J Biochem; 1982 Jan; 121(3):483-91. PubMed ID: 6276174 [No Abstract] [Full Text] [Related]
20. Oxidative titration of the nitrogenase VFe protein from Azotobacter vinelandii: an example of redox-gated electron flow. Tittsworth RC; Hales BJ Biochemistry; 1996 Jan; 35(2):479-87. PubMed ID: 8555218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]