BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28984391)

  • 1. Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues.
    Hiller CJ; Stiebritz MT; Lee CC; Liedtke J; Hu Y
    Chemistry; 2017 Nov; 23(64):16152-16156. PubMed ID: 28984391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of [Fe
    Lee CC; Stiebritz MT; Hu Y
    Acc Chem Res; 2019 May; 52(5):1168-1176. PubMed ID: 30977994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the all-ferrous [4Fe-4S]0 form of the nitrogenase iron protein from Azotobacter vinelandii.
    Strop P; Takahara PM; Chiu H; Angove HC; Burgess BK; Rees DC
    Biochemistry; 2001 Jan; 40(3):651-6. PubMed ID: 11170381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex.
    Lanzilotta WN; Fisher K; Seefeldt LC
    Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The [4Fe-4S] cluster domain of the nitrogenase iron protein facilitates conformational changes required for the cooperative binding of two nucleotides.
    Ryle MJ; Seefeldt LC
    Biochemistry; 1996 Dec; 35(49):15654-62. PubMed ID: 8961928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation.
    Lanzilotta WN; Seefeldt LC
    Biochemistry; 1997 Oct; 36(42):12976-83. PubMed ID: 9335558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic activities of NifEN: implications for nitrogenase evolution and mechanism.
    Hu Y; Yoshizawa JM; Fay AW; Lee CC; Wiig JA; Ribbe MW
    Proc Natl Acad Sci U S A; 2009 Oct; 106(40):16962-6. PubMed ID: 19805110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Docking and migration of carbon monoxide in nitrogenase: the case for gated pockets from infrared spectroscopy and molecular dynamics.
    Gee LB; Leontyev I; Stuchebrukhov A; Scott AD; Pelmenschikov V; Cramer SP
    Biochemistry; 2015 Jun; 54(21):3314-9. PubMed ID: 25919807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncoupling binding of substrate CO from turnover by vanadium nitrogenase.
    Lee CC; Fay AW; Weng TC; Krest CM; Hedman B; Hodgson KO; Hu Y; Ribbe MW
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13845-9. PubMed ID: 26515097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox properties and electron paramagnetic resonance spectroscopy of the transition state complex of Azotobacter vinelandii nitrogenase.
    Spee JH; Arendsen AF; Wassink H; Marritt SJ; Hagen WR; Haaker H
    FEBS Lett; 1998 Jul; 432(1-2):55-8. PubMed ID: 9710250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase.
    Dilworth MJ; Fisher K; Kim CH; Newton WE
    Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic formation of a nitrogenase iron-sulfur cluster.
    Zheng L; Dean DR
    J Biol Chem; 1994 Jul; 269(29):18723-6. PubMed ID: 8034623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of CO binding and release from Mo-nitrogenase during catalytic turnover.
    Cameron LM; Hales BJ
    Biochemistry; 1998 Jun; 37(26):9449-56. PubMed ID: 9649328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Docking of nitrogenase iron- and molybdenum-iron proteins for electron transfer and MgATP hydrolysis: the role of arginine 140 and lysine 143 of the Azotobacter vinelandii iron protein.
    Seefeldt LC
    Protein Sci; 1994 Nov; 3(11):2073-81. PubMed ID: 7703853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron inventory, kinetic assignment (E(n)), structure, and bonding of nitrogenase turnover intermediates with C2H2 and CO.
    Lee HI; Sørlie M; Christiansen J; Yang TC; Shao J; Dean DR; Hales BJ; Hoffman BM
    J Am Chem Soc; 2005 Nov; 127(45):15880-90. PubMed ID: 16277531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein dynamics and the all-ferrous [Fe4 S4 ] cluster in the nitrogenase iron protein.
    Tan ML; Perrin BS; Niu S; Huang Q; Ichiye T
    Protein Sci; 2016 Jan; 25(1):12-8. PubMed ID: 26271353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogenase reactivity: effects of pH on substrate reduction and CO inhibition.
    Pham DN; Burgess BK
    Biochemistry; 1993 Dec; 32(49):13725-31. PubMed ID: 8257707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of the redox potential on the activity of the nitrogenase and on the Fe-protein of Azotobacter vinelandii.
    Braaksma A; Haaker H; Grande HJ; Veeger C
    Eur J Biochem; 1982 Jan; 121(3):483-91. PubMed ID: 6276174
    [No Abstract]   [Full Text] [Related]  

  • 20. Oxidative titration of the nitrogenase VFe protein from Azotobacter vinelandii: an example of redox-gated electron flow.
    Tittsworth RC; Hales BJ
    Biochemistry; 1996 Jan; 35(2):479-87. PubMed ID: 8555218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.