BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 28985048)

  • 21. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis.
    Prieto G
    ChemSusChem; 2017 Mar; 10(6):1056-1070. PubMed ID: 28247481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formate-Bicarbonate Cycle as a Vehicle for Hydrogen and Energy Storage.
    Bahuguna A; Sasson Y
    ChemSusChem; 2021 Mar; 14(5):1258-1283. PubMed ID: 33231357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sustainable Low-Temperature Hydrogen Production from Lignocellulosic Biomass Passing through Formic Acid: Combination of Biomass Hydrolysis/Oxidation and Formic Acid Dehydrogenation.
    Park JH; Jin MH; Lee DW; Lee YJ; Song GS; Park SJ; Namkung H; Song KH; Choi YC
    Environ Sci Technol; 2019 Dec; 53(23):14041-14053. PubMed ID: 31602972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structured clay minerals-based nanomaterials for sustainable photo/thermal carbon dioxide conversion to cleaner fuels: A critical review.
    Fan WK; Tahir M
    Sci Total Environ; 2022 Nov; 845():157206. PubMed ID: 35810906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homogeneous and heterogeneous catalysts for hydrogenation of CO
    Bai ST; De Smet G; Liao Y; Sun R; Zhou C; Beller M; Maes BUW; Sels BF
    Chem Soc Rev; 2021 Apr; 50(7):4259-4298. PubMed ID: 33687387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account.
    Subaramanian M; Sivakumar G; Balaraman E
    Chem Rec; 2021 Dec; 21(12):3839-3871. PubMed ID: 34415674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Progress in Homogeneous Catalytic Dehydrogenation of Formic Acid.
    Onishi N; Kanega R; Kawanami H; Himeda Y
    Molecules; 2022 Jan; 27(2):. PubMed ID: 35056770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO
    Fernandes DM; Peixoto AF; Freire C
    Dalton Trans; 2019 Sep; 48(36):13508-13528. PubMed ID: 31407753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.
    Fink C; Montandon-Clerc M; Laurenczy G
    Chimia (Aarau); 2015; 69(12):746-752. PubMed ID: 26842324
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen storage in formic acid amine adducts.
    Boddien A; Gartner F; Mellmann D; Sponholz P; Junge H; Laurenczy G; Beller M
    Chimia (Aarau); 2011; 65(4):214-8. PubMed ID: 21678764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.
    Züttel A; Mauron P; Kato S; Callini E; Holzer M; Huang J
    Chimia (Aarau); 2015; 69(5):264-8. PubMed ID: 26507344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hydrogen from formic acid through its selective disproportionation over sodium germanate--a non-transition-metal catalysis system.
    Amos RI; Heinroth F; Chan B; Zheng S; Haynes BS; Easton CJ; Masters AF; Radom L; Maschmeyer T
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11275-9. PubMed ID: 25169798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exclusively Ligand-Mediated Catalytic Dehydrogenation of Alcohols.
    Sengupta D; Bhattacharjee R; Pramanick R; Rath SP; Saha Chowdhury N; Datta A; Goswami S
    Inorg Chem; 2016 Oct; 55(19):9602-9610. PubMed ID: 27646531
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous Catalytic Hydrogenation of Levulinic Acid to γ-Valerolactone with Formic Acid as Internal Hydrogen Source.
    Yu Z; Lu X; Xiong J; Li X; Bai H; Ji N
    ChemSusChem; 2020 Jun; 13(11):2916-2930. PubMed ID: 32153131
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photocatalytic Approaches for Hydrogen Production via Formic Acid Decomposition.
    Navlani-García M; Salinas-Torres D; Mori K; Kuwahara Y; Yamashita H
    Top Curr Chem (Cham); 2019 Sep; 377(5):27. PubMed ID: 31559502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogenation of CO
    Schwarz FM; Schuchmann K; Müller V
    Biotechnol Biofuels; 2018; 11():237. PubMed ID: 30186365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis.
    Guan C; Pan Y; Zhang T; Ajitha MJ; Huang KW
    Chem Asian J; 2020 Apr; 15(7):937-946. PubMed ID: 32030903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterogeneous Catalysis in Production and Utilization of Formic Acid for Renewable Energy.
    Wen H; Liu Y; Liu S; Peng Z; Wu X; Yuan H; Jiang J; Li B
    Small; 2024 May; 20(18):e2305405. PubMed ID: 38072804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A prolific catalyst for dehydrogenation of neat formic acid.
    Celaje JJ; Lu Z; Kedzie EA; Terrile NJ; Lo JN; Williams TJ
    Nat Commun; 2016 Apr; 7():11308. PubMed ID: 27076111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.