These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 28985048)

  • 41. Photo- and Electrochemical Valorization of Carbon Dioxide Using Earth-Abundant Molecular Catalysts.
    Rosas-Hernández A; Steinlechner C; Junge H; Beller M
    Top Curr Chem (Cham); 2017 Dec; 376(1):1. PubMed ID: 29214521
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly Dispersed Pd-CeOx Nanoparticles in Zeolite Nanosheets for Efficient CO2-Mediated Hydrogen Storage and Release.
    Li C; He G; Qu Z; Zhang K; Guo L; Zhang T; Zhang J; Sun Q; Mei D; Yu J
    Angew Chem Int Ed Engl; 2024 Jul; ():e202409001. PubMed ID: 38990826
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrogen production, storage, and transportation: recent advances.
    Rampai MM; Mtshali CB; Seroka NS; Khotseng L
    RSC Adv; 2024 Feb; 14(10):6699-6718. PubMed ID: 38405074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.
    De S; Saha B; Luque R
    Bioresour Technol; 2015 Feb; 178():108-118. PubMed ID: 25443804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fuels, power and chemical periodicity.
    Yao B; Kuznetsov VL; Xiao T; Jie X; Gonzalez-Cortes S; Dilworth JR; Al-Megren HA; Alshihri SM; Edwards PP
    Philos Trans A Math Phys Eng Sci; 2020 Sep; 378(2180):20190308. PubMed ID: 32811361
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selective homogeneous and heterogeneous catalytic conversion of methanol/dimethyl ether to triptane.
    Hazari N; Iglesia E; Labinger JA; Simonetti DA
    Acc Chem Res; 2012 Apr; 45(4):653-62. PubMed ID: 22277056
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Development of Liquid Organic Hydrogen Carriers for Hydrogen Storage and Transport.
    Le TH; Tran N; Lee HJ
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279357
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials.
    Sun Q; Wang N; Xu Q; Yu J
    Adv Mater; 2020 Nov; 32(44):e2001818. PubMed ID: 32638425
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CO
    Xie S; Zhang W; Lan X; Lin H
    ChemSusChem; 2020 Dec; 13(23):6141-6159. PubMed ID: 33137230
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent Advances in Reversible Liquid Organic Hydrogen Carrier Systems: From Hydrogen Carriers to Catalysts.
    Zhou MJ; Miao Y; Gu Y; Xie Y
    Adv Mater; 2024 Feb; ():e2311355. PubMed ID: 38374727
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Green Catalytic Process for Cyclic Carbonate Synthesis from Carbon Dioxide under Mild Conditions.
    Lang XD; He LN
    Chem Rec; 2016 Jun; 16(3):1337-52. PubMed ID: 27121768
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrification of Selective Catalytic Liquid Organic Hydrogen Carriers: Hydrogenation and Dehydrogenation Reactions.
    Sedminek A; Likozar B; Gyergyek S
    ACS Omega; 2024 Feb; 9(6):6027-6035. PubMed ID: 38371759
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.
    Torella JP; Gagliardi CJ; Chen JS; Bediako DK; Colón B; Way JC; Silver PA; Nocera DG
    Proc Natl Acad Sci U S A; 2015 Feb; 112(8):2337-42. PubMed ID: 25675518
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.
    Li S; Gong J
    Chem Soc Rev; 2014 Nov; 43(21):7245-56. PubMed ID: 25182070
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts.
    Asefa T
    Acc Chem Res; 2016 Sep; 49(9):1873-83. PubMed ID: 27599362
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Greening the Processes of Metal-Organic Framework Synthesis and their Use in Sustainable Catalysis.
    Chen J; Shen K; Li Y
    ChemSusChem; 2017 Aug; 10(16):3165-3187. PubMed ID: 28589626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.