BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 28985345)

  • 1. Replication stress-induced endogenous DNA damage drives cellular senescence induced by a sub-lethal oxidative stress.
    Venkatachalam G; Surana U; Clément MV
    Nucleic Acids Res; 2017 Oct; 45(18):10564-10582. PubMed ID: 28985345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest.
    Coluzzi E; Leone S; Sgura A
    Cells; 2019 Jan; 8(1):. PubMed ID: 30609792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of Dystroglycan Drives Cellular Senescence via Defective Mitosis-Mediated Genomic Instability.
    Jimenez-Gutierrez GE; Mondragon-Gonzalez R; Soto-Ponce LA; Gómez-Monsiváis WL; García-Aguirre I; Pacheco-Rivera RA; Suárez-Sánchez R; Brancaccio A; Magaña JJ; C R Perlingeiro R; Cisneros B
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32674290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagy deficient keratinocytes display increased DNA damage, senescence and aberrant lipid composition after oxidative stress in vitro and in vivo.
    Song X; Narzt MS; Nagelreiter IM; Hohensinner P; Terlecki-Zaniewicz L; Tschachler E; Grillari J; Gruber F
    Redox Biol; 2017 Apr; 11():219-230. PubMed ID: 28012437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion.
    Rodier F; Muñoz DP; Teachenor R; Chu V; Le O; Bhaumik D; Coppé JP; Campeau E; Beauséjour CM; Kim SH; Davalos AR; Campisi J
    J Cell Sci; 2011 Jan; 124(Pt 1):68-81. PubMed ID: 21118958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resveratrol sequentially induces replication and oxidative stresses to drive p53-CXCR2 mediated cellular senescence in cancer cells.
    Li B; Hou D; Guo H; Zhou H; Zhang S; Xu X; Liu Q; Zhang X; Zou Y; Gong Y; Shao C
    Sci Rep; 2017 Mar; 7(1):208. PubMed ID: 28303009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inducing cellular senescence
    Petrova NV; Luzhin AV; Serebrovskaya EO; Ryumina AP; Velichko AK; Razin SV; Kantidze OL
    Aging (Albany NY); 2016 Oct; 8(10):2449-2462. PubMed ID: 27744420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of lamin b1 in chromatin instability.
    Butin-Israeli V; Adam SA; Jain N; Otte GL; Neems D; Wiesmüller L; Berger SL; Goldman RD
    Mol Cell Biol; 2015 Mar; 35(5):884-98. PubMed ID: 25535332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lamin B receptor (LBR) is involved in the induction of cellular senescence in human cells.
    Arai R; En A; Takauji Y; Maki K; Miki K; Fujii M; Ayusawa D
    Mech Ageing Dev; 2019 Mar; 178():25-32. PubMed ID: 30615890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techniques to Induce and Quantify Cellular Senescence.
    Noren Hooten N; Evans MK
    J Vis Exp; 2017 May; (123):. PubMed ID: 28518126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1
    Zhang Y; Unnikrishnan A; Deepa SS; Liu Y; Li Y; Ikeno Y; Sosnowska D; Van Remmen H; Richardson A
    Redox Biol; 2017 Apr; 11():30-37. PubMed ID: 27846439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus.
    Martínez I; García-Carpizo V; Guijarro T; García-Gomez A; Navarro D; Aranda A; Zambrano A
    Virulence; 2016 May; 7(4):427-42. PubMed ID: 26809688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity in premature senescence by oxidative stress correlates with differential DNA damage during the cell cycle.
    Chen JH; Ozanne SE; Hales CN
    DNA Repair (Amst); 2005 Sep; 4(10):1140-8. PubMed ID: 16006199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct cellular responses to replication stress leading to apoptosis or senescence.
    Lukášová E; Řezáčová M; Bačíková A; Šebejová L; Vávrová J; Kozubek S
    FEBS Open Bio; 2019 May; 9(5):870-890. PubMed ID: 30982228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BRCA1 and BRCA2 protect against oxidative DNA damage converted into double-strand breaks during DNA replication.
    Fridlich R; Annamalai D; Roy R; Bernheim G; Powell SN
    DNA Repair (Amst); 2015 Jun; 30():11-20. PubMed ID: 25836596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upregulated expression of lamin B receptor increases cell proliferation and suppresses genomic instability: implications for cellular immortalization.
    En A; Takemoto K; Yamakami Y; Nakabayashi K; Fujii M
    FEBS J; 2024 May; 291(10):2155-2171. PubMed ID: 38462947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The role of DNA double strains damage repairing mechanisms in high glucose-induced endothelial senescence].
    Xu TY; Ding QF; Wan ZH; Zeng L; Chang BB; Zhang XJ
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2011 Mar; 42(2):190-3, 198. PubMed ID: 21500551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p53 and p16(INK4A) independent induction of senescence by chromatin-dependent alteration of S-phase progression.
    Prieur A; Besnard E; Babled A; Lemaitre JM
    Nat Commun; 2011 Sep; 2():473. PubMed ID: 21915115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular senescence: Molecular mechanisms and pathogenicity.
    Wei W; Ji S
    J Cell Physiol; 2018 Dec; 233(12):9121-9135. PubMed ID: 30078211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early S-phase cell hypersensitivity to heat stress.
    Petrova NV; Velichko AK; Razin SV; Kantidze OL
    Cell Cycle; 2016; 15(3):337-44. PubMed ID: 26689112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.