These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 28985460)
21. Molybdenum Nitride Porous Prisms with a Strong Plasmon Resonance Effect in the Visible Region for Surface-Enhanced Raman Spectroscopy. Song X; Li J; Kong Q; Bai H; Xi G J Phys Chem Lett; 2022 Jul; 13(29):6777-6782. PubMed ID: 35856813 [TBL] [Abstract][Full Text] [Related]
22. Metallic and plasmonic MoO Li J; Bai H; Zhai J; Li W; Fan W; Xi G Chem Commun (Camb); 2019 Apr; 55(32):4679-4682. PubMed ID: 30938728 [TBL] [Abstract][Full Text] [Related]
23. Wafer-scale double-layer stacked Au/Al2O3@Au nanosphere structure with tunable nanospacing for surface-enhanced Raman scattering. Hu Z; Liu Z; Li L; Quan B; Li Y; Li J; Gu C Small; 2014 Oct; 10(19):3933-42. PubMed ID: 24995658 [TBL] [Abstract][Full Text] [Related]
24. Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal. Saha A; Palmal S; Jana NR Nanoscale; 2012 Oct; 4(20):6649-57. PubMed ID: 22992658 [TBL] [Abstract][Full Text] [Related]
25. Ultrasensitive and Stable Plasmonic Surface-Enhanced Raman Scattering Substrates Covered with Atomically Thin Monolayers: Effect of the Insulating Property. Kim NY; Leem YC; Hong SH; Park JH; Yim SY ACS Appl Mater Interfaces; 2019 Feb; 11(6):6363-6373. PubMed ID: 30663309 [TBL] [Abstract][Full Text] [Related]
26. Electrical Tuning of the SERS Enhancement by Precise Defect Density Control. Zhou C; Sun L; Zhang F; Gu C; Zeng S; Jiang T; Shen X; Ang DS; Zhou J ACS Appl Mater Interfaces; 2019 Sep; 11(37):34091-34099. PubMed ID: 31433618 [TBL] [Abstract][Full Text] [Related]
27. In Situ Surface Restraint-Induced Synthesis of Transition-Metal Nitride Ultrathin Nanocrystals as Ultrasensitive SERS Substrate with Ultrahigh Durability. Liu D; Yi W; Fu Y; Kong Q; Xi G ACS Nano; 2022 Aug; 16(8):13123-13133. PubMed ID: 35930704 [TBL] [Abstract][Full Text] [Related]
28. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability. Sun H; Cong S; Zheng Z; Wang Z; Chen Z; Zhao Z J Am Chem Soc; 2019 Jan; 141(2):870-878. PubMed ID: 30566339 [TBL] [Abstract][Full Text] [Related]
29. DERS substrate based on NERS-SERS interaction in integrated microfluidic detection. Xiao C; Chen Z; Qin M; Zhang D; Fan L Appl Opt; 2018 Apr; 57(12):3172-3179. PubMed ID: 29714302 [TBL] [Abstract][Full Text] [Related]
30. Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy. Zhan Y; Liu Y; Zu H; Guo Y; Wu S; Yang H; Liu Z; Lei B; Zhuang J; Zhang X; Huang D; Hu C Nanoscale; 2018 Mar; 10(13):5997-6004. PubMed ID: 29542776 [TBL] [Abstract][Full Text] [Related]
31. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Wei H; Xu H Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688 [TBL] [Abstract][Full Text] [Related]
32. [Fabrication and Surface-Enhanced Raman Scattering Research on Polystyrene Nanospheres Arrays]. Li B; Niu G; Yi Y; Zhou XW; Liu XD; Ye X; Wang CY Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Sep; 36(9):2812-7. PubMed ID: 30084602 [TBL] [Abstract][Full Text] [Related]
33. δ-MoN Yolk Microspheres with Ultrathin Nanosheets for a Wide-Spectrum, Sensitive, and Durable Surface-Enhanced Raman Scattering Substrate. Li Y; Du R; Li W; Li J; Yang H; Bai H; Zou M; Xi G Anal Chem; 2021 Sep; 93(36):12360-12366. PubMed ID: 34472338 [TBL] [Abstract][Full Text] [Related]
34. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots. Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765 [TBL] [Abstract][Full Text] [Related]