These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 28985460)
41. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering. Guo H; Xu W; Zhou J; Xu S; Lombardi JR Nanotechnology; 2013 Feb; 24(4):045608. PubMed ID: 23299563 [TBL] [Abstract][Full Text] [Related]
42. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement. Wang X; Zhang E; Shi H; Tao Y; Ren X Analyst; 2022 Mar; 147(7):1257-1272. PubMed ID: 35253817 [TBL] [Abstract][Full Text] [Related]
43. Formation of Interstitial Hot-Spots Using the Reduced Gap-Size between Plasmonic Microbeads Pattern for Surface-Enhanced Raman Scattering Analysis. Lee T; Jung S; Kwon S; Kim W; Park J; Lim H; Lee J Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30823667 [TBL] [Abstract][Full Text] [Related]
44. Large-area, reproducible and sensitive plasmonic MIM substrates for surface-enhanced Raman scattering. Li K; Wang Y; Jiang K; Ren Y; Dai Y; Lu Y; Wang P Nanotechnology; 2016 Dec; 27(49):495402. PubMed ID: 27827351 [TBL] [Abstract][Full Text] [Related]
45. Optical Field Enhancement in Au Nanoparticle-Decorated Nanorod Arrays Prepared by Femtosecond Laser and Their Tunable Surface-Enhanced Raman Scattering Applications. Cao W; Jiang L; Hu J; Wang A; Li X; Lu Y ACS Appl Mater Interfaces; 2018 Jan; 10(1):1297-1305. PubMed ID: 29256245 [TBL] [Abstract][Full Text] [Related]
46. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL; Hsu TC; Liu YC; Yang KH; Tsai HY Anal Chim Acta; 2014 Jan; 806():188-96. PubMed ID: 24331055 [TBL] [Abstract][Full Text] [Related]
47. Facile in Situ Synthesis of Silver Nanoparticles on the Surface of Metal-Organic Framework for Ultrasensitive Surface-Enhanced Raman Scattering Detection of Dopamine. Jiang Z; Gao P; Yang L; Huang C; Li Y Anal Chem; 2015 Dec; 87(24):12177-82. PubMed ID: 26575213 [TBL] [Abstract][Full Text] [Related]
48. Morphological and Near-Field Properties of Silver Columnar Thin Film for Surface-Enhanced Raman Scattering. Liao Y; Huang J; Huang X; Jiang S J Nanosci Nanotechnol; 2018 Apr; 18(4):2803-2810. PubMed ID: 29442960 [TBL] [Abstract][Full Text] [Related]
49. Nanoporous Silver Film Fabricated by Oxygen Plasma: A Facile Approach for SERS Substrates. Ma C; Trujillo MJ; Camden JP ACS Appl Mater Interfaces; 2016 Sep; 8(36):23978-84. PubMed ID: 27551811 [TBL] [Abstract][Full Text] [Related]
50. Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Kubackova J; Fabriciova G; Miskovsky P; Jancura D; Sanchez-Cortes S Anal Chem; 2015 Jan; 87(1):663-9. PubMed ID: 25494815 [TBL] [Abstract][Full Text] [Related]
51. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
52. Plasmonic substrates for surface enhanced Raman scattering. Li W; Zhao X; Yi Z; Glushenkov AM; Kong L Anal Chim Acta; 2017 Sep; 984():19-41. PubMed ID: 28843563 [TBL] [Abstract][Full Text] [Related]
53. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps. Zhu Z; Bai B; Duan H; Zhang H; Zhang M; You O; Li Q; Tan Q; Wang J; Fan S; Jin G Small; 2014 Apr; 10(8):1603-11. PubMed ID: 24665074 [TBL] [Abstract][Full Text] [Related]
54. Two-Orders-of-Magnitude Enhancement of SERS Activity via a Simple Surface Engineering of Quasi-Metal Single-Crystal Frameworks. Song X; Li Y; Yin M; Yi W; Liu W; Li J; Xi G Nano Lett; 2024 Sep; 24(37):11683-11689. PubMed ID: 39225553 [TBL] [Abstract][Full Text] [Related]
55. Ultrasensitive Surface-Enhanced Raman Spectroscopy Detection Based on Amorphous Molybdenum Oxide Quantum Dots. Li H; Xu Q; Wang X; Liu W Small; 2018 Jul; 14(28):e1801523. PubMed ID: 29882238 [TBL] [Abstract][Full Text] [Related]
56. Synthesis and defect engineering of molybdenum oxides and their SERS applications. Gu C; Li D; Zeng S; Jiang T; Shen X; Zhang H Nanoscale; 2021 Mar; 13(11):5620-5651. PubMed ID: 33688873 [TBL] [Abstract][Full Text] [Related]
57. A Ag synchronously deposited and doped TiO Yang L; Sang Q; Du J; Yang M; Li X; Shen Y; Han X; Jiang X; Zhao B Phys Chem Chem Phys; 2018 Jun; 20(22):15149-15157. PubMed ID: 29789850 [TBL] [Abstract][Full Text] [Related]
58. Semiconductor SERS enhancement enabled by oxygen incorporation. Zheng Z; Cong S; Gong W; Xuan J; Li G; Lu W; Geng F; Zhao Z Nat Commun; 2017 Dec; 8(1):1993. PubMed ID: 29222510 [TBL] [Abstract][Full Text] [Related]
59. Thermally stable plasmonic nanocermets grown on microengineered surfaces as versatile surface enhanced Raman spectroscopy sensors for multianalyte detection. Gupta N; Gupta D; Aggarwal S; Siddhanta S; Narayana C; Barshilia HC ACS Appl Mater Interfaces; 2014 Dec; 6(24):22733-42. PubMed ID: 25456045 [TBL] [Abstract][Full Text] [Related]