These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 28985468)

  • 21. Ultrafast Interlayer Electron Transfer in Incommensurate Transition Metal Dichalcogenide Homobilayers.
    Li Y; Cui Q; Ceballos F; Lane SD; Qi Z; Zhao H
    Nano Lett; 2017 Nov; 17(11):6661-6666. PubMed ID: 29064255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrafast Charge Transfer at a Quantum Dot/2D Materials Interface Probed by Second Harmonic Generation.
    Goodman AJ; Dahod NS; Tisdale WA
    J Phys Chem Lett; 2018 Aug; 9(15):4227-4232. PubMed ID: 29995420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.
    You B; Wang X; Zheng Z; Mi W
    Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excitons at the interface of 2D TMDs and molecular semiconductors.
    Dziobek-Garrett R; Kempa TJ
    J Chem Phys; 2024 May; 160(20):. PubMed ID: 38804485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material.
    Zhang X; Qiao XF; Shi W; Wu JB; Jiang DS; Tan PH
    Chem Soc Rev; 2015 May; 44(9):2757-85. PubMed ID: 25679474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors.
    Ceballos F; Ju MG; Lane SD; Zeng XC; Zhao H
    Nano Lett; 2017 Mar; 17(3):1623-1628. PubMed ID: 28212486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electronic Coupling in Metallophthalocyanine-Transition Metal Dichalcogenide Mixed-Dimensional Heterojunctions.
    Amsterdam SH; Stanev TK; Zhou Q; Lou AJ; Bergeron H; Darancet P; Hersam MC; Stern NP; Marks TJ
    ACS Nano; 2019 Apr; 13(4):4183-4190. PubMed ID: 30848891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.
    Samad L; Bladow SM; Ding Q; Zhuo J; Jacobberger RM; Arnold MS; Jin S
    ACS Nano; 2016 Jul; 10(7):7039-46. PubMed ID: 27373305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures.
    Wang H; Bang J; Sun Y; Liang L; West D; Meunier V; Zhang S
    Nat Commun; 2016 May; 7():11504. PubMed ID: 27160484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The relationship between the coherent size, binding energy and dissociation dynamics of charge transfer excitons at organic interfaces.
    Kafle TR; Kattel B; Wang T; Chan WL
    J Phys Condens Matter; 2018 Nov; 30(45):454001. PubMed ID: 30265252
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Janus Monolayers for Ultrafast and Directional Charge Transfer in Transition Metal Dichalcogenide Heterostructures.
    Zheng T; Lin YC; Rafizadeh N; Geohegan DB; Ni Z; Xiao K; Zhao H
    ACS Nano; 2022 Mar; 16(3):4197-4205. PubMed ID: 35234440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excited-State Charge Transfer in Covalently Functionalized MoS
    Canton-Vitoria R; Gobeze HB; Blas-Ferrando VM; Ortiz J; Jang Y; Fernández-Lázaro F; Sastre-Santos Á; Nakanishi Y; Shinohara H; D'Souza F; Tagmatarchis N
    Angew Chem Int Ed Engl; 2019 Apr; 58(17):5712-5717. PubMed ID: 30791182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast Charge Transfer in Perovskite Nanowire/2D Transition Metal Dichalcogenide Heterostructures.
    Fang Q; Shang Q; Zhao L; Wang R; Zhang Z; Yang P; Sui X; Qiu X; Liu X; Zhang Q; Zhang Y
    J Phys Chem Lett; 2018 Apr; 9(7):1655-1662. PubMed ID: 29533623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sub-Picosecond Carrier Dynamics Induced by Efficient Charge Transfer in MoTe
    Lee K; Li J; Cheng L; Wang J; Kumar D; Wang Q; Chen M; Wu Y; Eda G; Chia EEM; Chang H; Yang H
    ACS Nano; 2019 Aug; 13(8):9587-9594. PubMed ID: 31322858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The organic-2D transition metal dichalcogenide heterointerface.
    Huang YL; Zheng YJ; Song Z; Chi D; Wee ATS; Quek SY
    Chem Soc Rev; 2018 May; 47(9):3241-3264. PubMed ID: 29651487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures.
    Bellus MZ; Ceballos F; Chiu HY; Zhao H
    ACS Nano; 2015 Jun; 9(6):6459-64. PubMed ID: 26046238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Harnessing Exciton-Exciton Annihilation in Two-Dimensional Semiconductors.
    Linardy E; Yadav D; Vella D; Verzhbitskiy IA; Watanabe K; Taniguchi T; Pauly F; Trushin M; Eda G
    Nano Lett; 2020 Mar; 20(3):1647-1653. PubMed ID: 32078334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave Facilitated Covalent Organic Framework/Transition Metal Dichalcogenide Heterostructures.
    Beagle LK; Moore DC; Kim G; Tran LD; Miesle P; Nguyen C; Fang Q; Kim KH; Prusnik TA; Newburger M; Rao R; Lou J; Jariwala D; Baldwin LA; Glavin NR
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):46876-46883. PubMed ID: 36194531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing the Carrier Transport in Monolayer MoS
    Wang C; Cusin L; Ma C; Unsal E; Wang H; Consolaro VG; Montes-García V; Han B; Vitale S; Dianat A; Croy A; Zhang H; Gutierrez R; Cuniberti G; Liu Z; Chi L; Ciesielski A; Samorì P
    Adv Mater; 2024 Jan; 36(1):e2305882. PubMed ID: 37690084
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrafast Charge Transfer and Enhanced Absorption in MoS
    Petoukhoff CE; Krishna MB; Voiry D; Bozkurt I; Deckoff-Jones S; Chhowalla M; O'Carroll DM; Dani KM
    ACS Nano; 2016 Nov; 10(11):9899-9908. PubMed ID: 27934091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.