These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

710 related articles for article (PubMed ID: 28985525)

  • 1. CRISPR/Cas9-Based Engineering of the Epigenome.
    Pulecio J; Verma N; Mejía-Ramírez E; Huangfu D; Raya A
    Cell Stem Cell; 2017 Oct; 21(4):431-447. PubMed ID: 28985525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Locus-Directed Editing of the Epigenome from Basic Mechanistic Engineering to First Clinical Applications.
    Rots MG; Jeltsch A
    Methods Mol Biol; 2024; 2842():3-20. PubMed ID: 39012588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 guided genome and epigenome engineering and its therapeutic applications in immune mediated diseases.
    Singh DD; Hawkins RD; Lahesmaa R; Tripathi SK
    Semin Cell Dev Biol; 2019 Dec; 96():32-43. PubMed ID: 31112800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A modular dCas9-SunTag DNMT3A epigenome editing system overcomes pervasive off-target activity of direct fusion dCas9-DNMT3A constructs.
    Pflueger C; Tan D; Swain T; Nguyen T; Pflueger J; Nefzger C; Polo JM; Ford E; Lister R
    Genome Res; 2018 Aug; 28(8):1193-1206. PubMed ID: 29907613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of eukaryotic chromatin state on CRISPR-Cas9 editing efficiencies.
    Verkuijl SA; Rots MG
    Curr Opin Biotechnol; 2019 Feb; 55():68-73. PubMed ID: 30189348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities.
    Sen D; Keung AJ
    Methods Mol Biol; 2018; 1767():65-87. PubMed ID: 29524129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas mediated epigenome editing for cancer therapy.
    Ansari I; Chaturvedi A; Chitkara D; Singh S
    Semin Cancer Biol; 2022 Aug; 83():570-583. PubMed ID: 33421620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Editing the Epigenome: Reshaping the Genomic Landscape.
    Holtzman L; Gersbach CA
    Annu Rev Genomics Hum Genet; 2018 Aug; 19():43-71. PubMed ID: 29852072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications.
    Didovyk A; Borek B; Tsimring L; Hasty J
    Curr Opin Biotechnol; 2016 Aug; 40():177-184. PubMed ID: 27344519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editing the Epigenome: Overview, Open Questions, and Directions of Future Development.
    Rots MG; Jeltsch A
    Methods Mol Biol; 2018; 1767():3-18. PubMed ID: 29524127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system.
    Garcia-Bloj B; Moses C; Sgro A; Plani-Lam J; Arooj M; Duffy C; Thiruvengadam S; Sorolla A; Rashwan R; Mancera RL; Leisewitz A; Swift-Scanlan T; Corvalan AH; Blancafort P
    Oncotarget; 2016 Sep; 7(37):60535-60554. PubMed ID: 27528034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo epigenome editing and transcriptional modulation using CRISPR technology.
    Lau CH; Suh Y
    Transgenic Res; 2018 Dec; 27(6):489-509. PubMed ID: 30284145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas-Based Epigenome Editing: Advances, Applications, and Clinical Utility.
    Goell JH; Hilton IB
    Trends Biotechnol; 2021 Jul; 39(7):678-691. PubMed ID: 33972106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allele-Specific Epigenome Editing.
    Bashtrykov P; Jeltsch A
    Methods Mol Biol; 2018; 1767():137-146. PubMed ID: 29524132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic Targeting of TET Activity for Targeted Demethylation Using CRISPR/Cas9.
    Nguyen TV; Lister R
    Methods Mol Biol; 2021; 2272():181-194. PubMed ID: 34009614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-mediated modification of DNA methylation pattern in the new era of cancer therapy.
    Maroufi F; Maali A; Abdollahpour-Alitappeh M; Ahmadi MH; Azad M
    Epigenomics; 2020 Oct; 12(20):1845-1859. PubMed ID: 33185489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic editing: Dissecting chromatin function in context.
    Policarpi C; Dabin J; Hackett JA
    Bioessays; 2021 May; 43(5):e2000316. PubMed ID: 33724509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.