These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. DNA targeting specificity of RNA-guided Cas9 nucleases. Hsu PD; Scott DA; Weinstein JA; Ran FA; Konermann S; Agarwala V; Li Y; Fine EJ; Wu X; Shalem O; Cradick TJ; Marraffini LA; Bao G; Zhang F Nat Biotechnol; 2013 Sep; 31(9):827-32. PubMed ID: 23873081 [TBL] [Abstract][Full Text] [Related]
23. Dynamics changes of CRISPR-Cas9 systems induced by high fidelity mutations. Zheng L; Shi J; Mu Y Phys Chem Chem Phys; 2018 Nov; 20(43):27439-27448. PubMed ID: 30357163 [TBL] [Abstract][Full Text] [Related]
25. High fidelity CRISPR/Cas9 increases precise monoallelic and biallelic editing events in primordial germ cells. Idoko-Akoh A; Taylor L; Sang HM; McGrew MJ Sci Rep; 2018 Oct; 8(1):15126. PubMed ID: 30310080 [TBL] [Abstract][Full Text] [Related]
26. A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Tu M; Lin L; Cheng Y; He X; Sun H; Xie H; Fu J; Liu C; Li J; Chen D; Xi H; Xue D; Liu Q; Zhao J; Gao C; Song Z; Qu J; Gu F Nucleic Acids Res; 2017 Nov; 45(19):11295-11304. PubMed ID: 28977650 [TBL] [Abstract][Full Text] [Related]
27. Rational Engineering of CRISPR-Cas9 Nuclease to Attenuate Position-Dependent Off-Target Effects. Zuo Z; Babu K; Ganguly C; Zolekar A; Newsom S; Rajan R; Wang YC; Liu J CRISPR J; 2022 Apr; 5(2):329-340. PubMed ID: 35438515 [TBL] [Abstract][Full Text] [Related]
28. A Type II-B Cas9 nuclease with minimized off-targets and reduced chromosomal translocations in vivo. Bestas B; Wimberger S; Degtev D; Madsen A; Rottner AK; Karlsson F; Naumenko S; Callahan M; Touza JL; Francescatto M; Möller CI; Badertscher L; Li S; Cerboni S; Selfjord N; Ericson E; Gordon E; Firth M; Chylinski K; Taheri-Ghahfarokhi A; Bohlooly-Y M; Snowden M; Pangalos M; Nuttall B; Akcakaya P; Sienski G; Maresca M Nat Commun; 2023 Sep; 14(1):5474. PubMed ID: 37673883 [TBL] [Abstract][Full Text] [Related]
29. Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta. Johnson RA; Gurevich V; Filler S; Samach A; Levy AA Plant Mol Biol; 2015 Jan; 87(1-2):143-56. PubMed ID: 25403732 [TBL] [Abstract][Full Text] [Related]
30. Fusion of SpCas9 to E. coli Rec A protein enhances CRISPR-Cas9 mediated gene knockout in mammalian cells. Lin L; Petersen TS; Jensen KT; Bolund L; Kühn R; Luo Y J Biotechnol; 2017 Apr; 247():42-49. PubMed ID: 28259533 [TBL] [Abstract][Full Text] [Related]
31. Off-target effects of engineered nucleases. Yee JK FEBS J; 2016 Sep; 283(17):3239-48. PubMed ID: 27208701 [TBL] [Abstract][Full Text] [Related]
32. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations. Zuo Z; Liu J Sci Rep; 2016 Nov; 5():37584. PubMed ID: 27874072 [TBL] [Abstract][Full Text] [Related]
33. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. Heler R; Wright AV; Vucelja M; Bikard D; Doudna JA; Marraffini LA Mol Cell; 2017 Jan; 65(1):168-175. PubMed ID: 28017588 [TBL] [Abstract][Full Text] [Related]
34. Differential efficacies of Cas nucleases on microsatellites involved in human disorders and associated off-target mutations. Poggi L; Emmenegger L; Descorps-Declère S; Dumas B; Richard GF Nucleic Acids Res; 2021 Aug; 49(14):8120-8134. PubMed ID: 34233005 [TBL] [Abstract][Full Text] [Related]
35. A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets. Ham DT; Browne TS; Banglorewala PN; Wilson TL; Michael RK; Gloor GB; Edgell DR Nat Commun; 2023 Sep; 14(1):5514. PubMed ID: 37679324 [TBL] [Abstract][Full Text] [Related]
36. Systematic in vitro profiling of off-target affinity, cleavage and efficiency for CRISPR enzymes. Zhang L; Rube HT; Vakulskas CA; Behlke MA; Bussemaker HJ; Pufall MA Nucleic Acids Res; 2020 May; 48(9):5037-5053. PubMed ID: 32315032 [TBL] [Abstract][Full Text] [Related]
37. Identification of off-target cleavage sites of zinc finger nucleases and TAL effector nucleases using predictive models. Fine EJ; Cradick TJ; Bao G Methods Mol Biol; 2014; 1114():371-83. PubMed ID: 24557916 [TBL] [Abstract][Full Text] [Related]
38. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Kim D; Kim J; Hur JK; Been KW; Yoon SH; Kim JS Nat Biotechnol; 2016 Aug; 34(8):863-8. PubMed ID: 27272384 [TBL] [Abstract][Full Text] [Related]