These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 28986270)
21. Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Li H; Li Y; Ke Q; Kwak SS; Zhang S; Deng X Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33271965 [TBL] [Abstract][Full Text] [Related]
23. N-linked glycoproteome profiling of seedling leaf in Brachypodium distachyon L. Zhang M; Chen GX; Lv DW; Li XH; Yan YM J Proteome Res; 2015 Apr; 14(4):1727-38. PubMed ID: 25652041 [TBL] [Abstract][Full Text] [Related]
24. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings. Jiang Z; Jin F; Shan X; Li Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779286 [TBL] [Abstract][Full Text] [Related]
25. Changes in protein profile detected in seedlings of Caesalpinia peltophoroides (Fabaceae) after exposure to high concentration of cadmium. Gomes LM; Gesteira AS; de Almeida AA; de Castro AV; Dias LO; Pirovani CP; Gomes FP Genet Mol Res; 2012 Aug; 11(3):2694-707. PubMed ID: 22843071 [TBL] [Abstract][Full Text] [Related]
26. Endoplasmic Reticulum Subproteome Analysis Reveals Underlying Defense Mechanisms of Wheat Seedling Leaves under Salt Stress. Zhang J; Liu D; Zhu D; Liu N; Yan Y Int J Mol Sci; 2021 May; 22(9):. PubMed ID: 34063651 [TBL] [Abstract][Full Text] [Related]
27. Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance. Cheng Z; Dong K; Ge P; Bian Y; Dong L; Deng X; Li X; Yan Y PLoS One; 2015; 10(5):e0125302. PubMed ID: 25984726 [TBL] [Abstract][Full Text] [Related]
28. Genes involved in mRNA surveillance are induced in Brachypodium distachyon under cadmium toxicity. Aksoy E; Uncu AT; Filiz E; Orman Ş; Çetin D; Akbudak MA Mol Biol Rep; 2022 Jun; 49(6):5303-5313. PubMed ID: 34812999 [TBL] [Abstract][Full Text] [Related]
29. Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Cui G; Sun F; Gao X; Xie K; Zhang C; Liu S; Xi Y Planta; 2018 Jul; 248(1):69-87. PubMed ID: 29564630 [TBL] [Abstract][Full Text] [Related]
30. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Kim DW; Rakwal R; Agrawal GK; Jung YH; Shibato J; Jwa NS; Iwahashi Y; Iwahashi H; Kim DH; Shim IeS; Usui K Electrophoresis; 2005 Dec; 26(23):4521-39. PubMed ID: 16315177 [TBL] [Abstract][Full Text] [Related]
31. Hydroxyproline-Rich Glycoproteins as Markers of Temperature Stress in the Leaves of Pinski A; Betekhtin A; Sala K; Godel-Jedrychowska K; Kurczynska E; Hasterok R Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31130622 [TBL] [Abstract][Full Text] [Related]
32. Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon. Wen F; Wu X; Li T; Jia M; Liu X; Li P; Zhou X; Ji X; Yue X PLoS One; 2017; 12(7):e0180352. PubMed ID: 28683139 [TBL] [Abstract][Full Text] [Related]
33. Molecular Characterization of the 14-3-3 Gene Family in Brachypodium distachyon L. Reveals High Evolutionary Conservation and Diverse Responses to Abiotic Stresses. Cao H; Xu Y; Yuan L; Bian Y; Wang L; Zhen S; Hu Y; Yan Y Front Plant Sci; 2016; 7():1099. PubMed ID: 27507982 [TBL] [Abstract][Full Text] [Related]
34. Molecular Characterization and Expression Profiling of Subburaj S; Zhu D; Li X; Hu Y; Yan Y Front Plant Sci; 2017; 8():743. PubMed ID: 28536593 [TBL] [Abstract][Full Text] [Related]
35. Comparative proteomic analysis of drought tolerance in the two contrasting Tibetan wild genotypes and cultivated genotype. Wang N; Zhao J; He X; Sun H; Zhang G; Wu F BMC Genomics; 2015 Jun; 16(1):432. PubMed ID: 26044796 [TBL] [Abstract][Full Text] [Related]
36. Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.). Sun H; Dai H; Wang X; Wang G Ecotoxicol Environ Saf; 2016 Nov; 133():114-26. PubMed ID: 27434422 [TBL] [Abstract][Full Text] [Related]
37. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance. Yıldız M; Terzi H Ecotoxicol Environ Saf; 2016 Feb; 124():255-266. PubMed ID: 26546907 [TBL] [Abstract][Full Text] [Related]
38. Proteomic analysis of soybean seedling leaf under waterlogging stress in a time-dependent manner. Kazemi Oskuei B; Yin X; Hashiguchi A; Bandehagh A; Komatsu S Biochim Biophys Acta Proteins Proteom; 2017 Sep; 1865(9):1167-1177. PubMed ID: 28666670 [TBL] [Abstract][Full Text] [Related]
39. Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins. Francin-Allami M; Merah K; Albenne C; Rogniaux H; Pavlovic M; Lollier V; Sibout R; Guillon F; Jamet E; Larré C Proteomics; 2015 Jul; 15(13):2296-306. PubMed ID: 25787258 [TBL] [Abstract][Full Text] [Related]
40. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). Zhang M; Lv D; Ge P; Bian Y; Chen G; Zhu G; Li X; Yan Y J Proteomics; 2014 Sep; 109():290-308. PubMed ID: 25065648 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]