BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28986290)

  • 1. Assessment of hepatic metabolism-dependent nephrotoxicity on an organs-on-a-chip microdevice.
    Li Z; Jiang L; Zhu Y; Su W; Xu C; Tao T; Shi Y; Qin J
    Toxicol In Vitro; 2018 Feb; 46():1-8. PubMed ID: 28986290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip.
    Choucha-Snouber L; Aninat C; Grsicom L; Madalinski G; Brochot C; Poleni PE; Razan F; Guillouzo CG; Legallais C; Corlu A; Leclerc E
    Biotechnol Bioeng; 2013 Feb; 110(2):597-608. PubMed ID: 22887128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of metabolism-dependent drug efficacy and toxicity on a multilayer organs-on-a-chip.
    Li Z; Guo Y; Yu Y; Xu C; Xu H; Qin J
    Integr Biol (Camb); 2016 Oct; 8(10):1022-1029. PubMed ID: 27605158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of hepatic drug-metabolism for glioblastoma using liver-brain chip.
    Li Z; Li D; Guo Y; Wang Y; Su W
    Biotechnol Lett; 2021 Feb; 43(2):383-392. PubMed ID: 33145669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic Gut-liver chip for reproducing the first pass metabolism.
    Choe A; Ha SK; Choi I; Choi N; Sung JH
    Biomed Microdevices; 2017 Mar; 19(1):4. PubMed ID: 28074384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug absorption related nephrotoxicity assessment on an intestine-kidney chip.
    Li Z; Su W; Zhu Y; Tao T; Li D; Peng X; Qin J
    Biomicrofluidics; 2017 May; 11(3):034114. PubMed ID: 28652884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs.
    Yin F; Zhang X; Wang L; Wang Y; Zhu Y; Li Z; Tao T; Chen W; Yu H; Qin J
    Lab Chip; 2021 Feb; 21(3):571-581. PubMed ID: 33319899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D gut-liver chip with a PK model for prediction of first-pass metabolism.
    Lee DW; Ha SK; Choi I; Sung JH
    Biomed Microdevices; 2017 Nov; 19(4):100. PubMed ID: 29116458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Drug Screening and Nephrotoxicity Assessment on Co-culture Microfluidic Kidney Chip.
    Yin L; Du G; Zhang B; Zhang H; Yin R; Zhang W; Yang SM
    Sci Rep; 2020 Apr; 10(1):6568. PubMed ID: 32300186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-organ chip co-culture of neurospheres and liver equivalents for long-term substance testing.
    Materne EM; Ramme AP; Terrasso AP; Serra M; Alves PM; Brito C; Sakharov DA; Tonevitsky AG; Lauster R; Marx U
    J Biotechnol; 2015 Jul; 205():36-46. PubMed ID: 25678136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform.
    Rajan SAP; Aleman J; Wan M; Pourhabibi Zarandi N; Nzou G; Murphy S; Bishop CE; Sadri-Ardekani H; Shupe T; Atala A; Hall AR; Skardal A
    Acta Biomater; 2020 Apr; 106():124-135. PubMed ID: 32068138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents.
    Maschmeyer I; Lorenz AK; Schimek K; Hasenberg T; Ramme AP; Hübner J; Lindner M; Drewell C; Bauer S; Thomas A; Sambo NS; Sonntag F; Lauster R; Marx U
    Lab Chip; 2015 Jun; 15(12):2688-99. PubMed ID: 25996126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-channel cell co-culture for drug development based on glass microfluidic chip-mass spectrometry coupled platform.
    Wu J; Jie M; Dong X; Qi H; Lin JM
    Rapid Commun Mass Spectrom; 2016 Aug; 30 Suppl 1():80-6. PubMed ID: 27539420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An on-chip small intestine-liver model for pharmacokinetic studies.
    Kimura H; Ikeda T; Nakayama H; Sakai Y; Fujii T
    J Lab Autom; 2015 Jun; 20(3):265-73. PubMed ID: 25385717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of rat precision-cut fibrotic liver slice technique and its application in verapamil metabolism.
    Guo Y; Wang H; Zhang C
    Clin Exp Pharmacol Physiol; 2007; 34(5-6):406-13. PubMed ID: 17439408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New ifosfamide analogs designed for lower associated neurotoxicity and nephrotoxicity with modified alkylating kinetics leading to enhanced in vitro anticancer activity.
    Storme T; Deroussent A; Mercier L; Prost E; Re M; Munier F; Martens T; Bourget P; Vassal G; Royer J; Paci A
    J Pharmacol Exp Ther; 2009 Feb; 328(2):598-609. PubMed ID: 19017849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal ontogeny of ifosfamide nephrotoxicity.
    Aleksa K; Halachmi N; Ito S; Koren G
    J Lab Clin Med; 2004 Dec; 144(6):285-93. PubMed ID: 15614250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ifosfamide-induced nephrotoxicity: mechanism and prevention.
    Nissim I; Horyn O; Daikhin Y; Nissim I; Luhovyy B; Phillips PC; Yudkoff M
    Cancer Res; 2006 Aug; 66(15):7824-31. PubMed ID: 16885387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gut-liver on a chip toward an in vitro model of hepatic steatosis.
    Lee SY; Sung JH
    Biotechnol Bioeng; 2018 Nov; 115(11):2817-2827. PubMed ID: 29981260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of N-acetylcysteine on ifosfamide-induced nephrotoxicity: in vitro studies in renal tubular cells.
    Chen N; Aleksa K; Woodland C; Rieder M; Koren G
    Transl Res; 2007 Jul; 150(1):51-7. PubMed ID: 17585863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.