BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28986534)

  • 1. Spatial scale of receptive fields in the visual sector of the cat thalamic reticular nucleus.
    Soto-Sánchez C; Wang X; Vaingankar V; Sommer FT; Hirsch JA
    Nat Commun; 2017 Oct; 8(1):800. PubMed ID: 28986534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Receptive field properties of cat perigeniculate neurons correlate with excitatory and inhibitory connectivity to LGN relay neurons.
    Osaki H; Naito T; Soma S; Sato H
    Neurosci Res; 2018 Jul; 132():26-36. PubMed ID: 28916470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus.
    Sherman SM; Koch C
    Exp Brain Res; 1986; 63(1):1-20. PubMed ID: 3015651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomically structured burst spiking of thalamic reticular nucleus cells: implications for distinct modulations of sensory processing in lemniscal and non-lemniscal thalamocortical loop circuitries.
    Kimura A; Imbe H
    Eur J Neurosci; 2015 May; 41(10):1276-93. PubMed ID: 25808293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amblyopia decreases activation of the corticogeniculate pathway and visual thalamic reticularis in attentive rats: a 'focal attention' hypothesis.
    Montero VM
    Neuroscience; 1999; 91(3):805-17. PubMed ID: 10391464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attentional activation of the visual thalamic reticular nucleus depends on 'top-down' inputs from the primary visual cortex via corticogeniculate pathways.
    Montero VM
    Brain Res; 2000 May; 864(1):95-104. PubMed ID: 10793191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective elimination of corticogeniculate feedback abolishes the electroencephalogram dependence of primary visual cortical receptive fields and reduces their spatial specificity.
    Eyding D; Macklis JD; Neubacher U; Funke K; Wörgötter F
    J Neurosci; 2003 Aug; 23(18):7021-33. PubMed ID: 12904463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional distinction of perigeniculate and thalamic reticular neurons in the cat.
    Ahlsén G; Lindström S; Lo FS
    Exp Brain Res; 1982; 46(1):118-26. PubMed ID: 7067783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional synaptic contacts by intranuclear axon collaterals of thalamic relay neurons.
    Cox CL; Reichova I; Sherman SM
    J Neurosci; 2003 Aug; 23(20):7642-6. PubMed ID: 12930803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inhibitory role of the visually responsive region of the thalamic reticular nucleus in the rat.
    French CR; Sefton AJ; Mackay-Sim A
    Exp Brain Res; 1985; 57(3):471-9. PubMed ID: 3979490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential response dynamics of corticothalamic glutamatergic synapses in the lateral geniculate nucleus and thalamic reticular nucleus.
    Alexander GM; Fisher TL; Godwin DW
    Neuroscience; 2006; 137(2):367-72. PubMed ID: 16360282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First order connections of the visual sector of the thalamic reticular nucleus in marmoset monkeys (Callithrix jacchus).
    Fitzgibbon T; Szmajda BA; Martin PR
    Vis Neurosci; 2007; 24(6):857-74. PubMed ID: 18093372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature article: the structure and function of dynamic cortical and thalamic receptive fields.
    Ghazanfar AA; Nicolelis MA
    Cereb Cortex; 2001 Mar; 11(3):183-93. PubMed ID: 11230091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamic relays and cortical functioning.
    Sherman SM
    Prog Brain Res; 2005; 149():107-26. PubMed ID: 16226580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The visceral sector of the thalamic reticular nucleus in the rat.
    Stehberg J; Acuña-Goycolea C; Ceric F; Torrealba F
    Neuroscience; 2001; 106(4):745-55. PubMed ID: 11682160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topography of projections from the primary and non-primary auditory cortical areas to the medial geniculate body and thalamic reticular nucleus in the rat.
    Kimura A; Donishi T; Okamoto K; Tamai Y
    Neuroscience; 2005; 135(4):1325-42. PubMed ID: 16165287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional alignment of feedback effects from visual cortex to thalamus.
    Wang W; Jones HE; Andolina IM; Salt TE; Sillito AM
    Nat Neurosci; 2006 Oct; 9(10):1330-6. PubMed ID: 16980966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Processing of spatial visual information along the pathway between the suprageniculate nucleus and the anterior ectosylvian cortex.
    Eördegh G; Nagy A; Berényi A; Benedek G
    Brain Res Bull; 2005 Oct; 67(4):281-9. PubMed ID: 16182935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex.
    Sillito AM; Jones HE; Gerstein GL; West DC
    Nature; 1994 Jun; 369(6480):479-82. PubMed ID: 8202137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins of afferents to visual suprageniculate nucleus of the cat.
    Hicks TP; Stark CA; Fletcher WA
    J Comp Neurol; 1986 Apr; 246(4):544-54. PubMed ID: 2422232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.