BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28986673)

  • 1. From bird's eye views to molecular communities: two-layered visualization of structure-activity relationships in large compound data sets.
    Kayastha S; Kunimoto R; Horvath D; Varnek A; Bajorath J
    J Comput Aided Mol Des; 2017 Nov; 31(11):961-977. PubMed ID: 28986673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of discontinuous structure-activity relationships from compound data sets through particle swarm optimization.
    Namasivayam V; Iyer P; Bajorath J
    J Chem Inf Model; 2011 Jul; 51(7):1545-51. PubMed ID: 21644503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of chemical space networks using a Tanimoto similarity variant based upon maximum common substructures.
    Zhang B; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Oct; 29(10):937-50. PubMed ID: 26419860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparse Generative Topographic Mapping for Both Data Visualization and Clustering.
    Kaneko H
    J Chem Inf Model; 2018 Dec; 58(12):2528-2535. PubMed ID: 30352147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-activity relationship anatomy by network-like similarity graphs and local structure-activity relationship indices.
    Wawer M; Peltason L; Weskamp N; Teckentrup A; Bajorath J
    J Med Chem; 2008 Oct; 51(19):6075-84. PubMed ID: 18798611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAR Matrix Method for Large-Scale Analysis of Compound Structure-Activity Relationships and Exploration of Multitarget Activity Spaces.
    Hu Y; Bajorath J
    Methods Mol Biol; 2018; 1825():339-352. PubMed ID: 30334212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical data visualization and analysis with incremental generative topographic mapping: big data challenge.
    Gaspar HA; Baskin II; Marcou G; Horvath D; Varnek A
    J Chem Inf Model; 2015 Jan; 55(1):84-94. PubMed ID: 25423612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns.
    Namasivayam V; Gupta-Ostermann D; Balfer J; Heikamp K; Bajorath J
    J Chem Inf Model; 2014 May; 54(5):1301-10. PubMed ID: 24803014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic computational analysis of structure-activity relationships: concepts, challenges and recent advances.
    Peltason L; Bajorath J
    Future Med Chem; 2009 Jun; 1(3):451-66. PubMed ID: 21426126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization.
    Turk S; Merget B; Rippmann F; Fulle S
    J Chem Inf Model; 2017 Dec; 57(12):3079-3085. PubMed ID: 29131617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of chemical space networks on the basis of Tversky similarity.
    Wu M; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2016 Jan; 30(1):1-12. PubMed ID: 26695392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of bioactive chemical space networks generated using substructure- and fingerprint-based measures of molecular similarity.
    Zhang B; Vogt M; Maggiora GM; Bajorath J
    J Comput Aided Mol Des; 2015 Jul; 29(7):595-608. PubMed ID: 26049785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From activity cliffs to activity ridges: informative data structures for SAR analysis.
    Vogt M; Huang Y; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1848-56. PubMed ID: 21761918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Local structural changes, global data views: graphical substructure-activity relationship trailing.
    Wawer M; Bajorath J
    J Med Chem; 2011 Apr; 54(8):2944-51. PubMed ID: 21443196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale SAR analysis.
    Bajorath J
    Drug Discov Today Technol; 2013 Sep; 10(3):e419-26. PubMed ID: 24050139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditional probabilities of activity landscape features for individual compounds.
    Vogt M; Iyer P; Maggiora GM; Bajorath J
    J Chem Inf Model; 2013 Jul; 53(7):1602-12. PubMed ID: 23789585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SAR monitoring of evolving compound data sets using activity landscapes.
    Iyer P; Hu Y; Bajorath J
    J Chem Inf Model; 2011 Mar; 51(3):532-40. PubMed ID: 21322535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationalizing three-dimensional activity landscapes and the influence of molecular representations on landscape topology and the formation of activity cliffs.
    Peltason L; Iyer P; Bajorath J
    J Chem Inf Model; 2010 Jun; 50(6):1021-33. PubMed ID: 20443603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress with modeling activity landscapes in drug discovery.
    Vogt M
    Expert Opin Drug Discov; 2018 Jul; 13(7):605-615. PubMed ID: 29656681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational analysis of activity and selectivity cliffs.
    Peltason L; Bajorath J
    Methods Mol Biol; 2011; 672():119-32. PubMed ID: 20838966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.