These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 28986979)
1. Inorganic pyrophosphatases of Family II-two decades after their discovery. Baykov AA; Anashkin VA; Salminen A; Lahti R FEBS Lett; 2017 Oct; 591(20):3225-3234. PubMed ID: 28986979 [TBL] [Abstract][Full Text] [Related]
2. Cooperativity in catalysis by canonical family II pyrophosphatases. Anashkin VA; Aksenova VA; Salminen A; Lahti R; Baykov AA Biochem Biophys Res Commun; 2019 Sep; 517(2):266-271. PubMed ID: 31349973 [TBL] [Abstract][Full Text] [Related]
3. The tetrameric structure of nucleotide-regulated pyrophosphatase and its modulation by deletion mutagenesis and ligand binding. Anashkin VA; Salminen A; Orlov VN; Lahti R; Baykov AA Arch Biochem Biophys; 2020 Oct; 692():108537. PubMed ID: 32810477 [TBL] [Abstract][Full Text] [Related]
4. A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides. Jämsen J; Tuominen H; Salminen A; Belogurov GA; Magretova NN; Baykov AA; Lahti R Biochem J; 2007 Dec; 408(3):327-33. PubMed ID: 17714078 [TBL] [Abstract][Full Text] [Related]
5. Cystathionine β-Synthase (CBS) Domain-containing Pyrophosphatase as a Target for Diadenosine Polyphosphates in Bacteria. Anashkin VA; Salminen A; Tuominen HK; Orlov VN; Lahti R; Baykov AA J Biol Chem; 2015 Nov; 290(46):27594-603. PubMed ID: 26400082 [TBL] [Abstract][Full Text] [Related]
6. Effects of active site mutations on the metal binding affinity, catalytic competence, and stability of the family II pyrophosphatase from Bacillus subtilis. Halonen P; Tammenkoski M; Niiranen L; Huopalahti S; Parfenyev AN; Goldman A; Baykov A; Lahti R Biochemistry; 2005 Mar; 44(10):4004-10. PubMed ID: 15751976 [TBL] [Abstract][Full Text] [Related]
7. Rates of elementary catalytic steps for different metal forms of the family II pyrophosphatase from Streptococcus gordonii. Zyryanov AB; Vener AV; Salminen A; Goldman A; Lahti R; Baykov AA Biochemistry; 2004 Feb; 43(4):1065-74. PubMed ID: 14744152 [TBL] [Abstract][Full Text] [Related]
8. Crystallographic and modeling study of the human inorganic pyrophosphatase 1: A potential anti-cancer drug target. Niu H; Zhu J; Qu Q; Zhou X; Huang X; Du Z Proteins; 2021 Jul; 89(7):853-865. PubMed ID: 33583053 [TBL] [Abstract][Full Text] [Related]
9. Structural studies of metal ions in family II pyrophosphatases: the requirement for a Janus ion. Fabrichniy IP; Lehtiö L; Salminen A; Zyryanov AB; Baykov AA; Lahti R; Goldman A Biochemistry; 2004 Nov; 43(45):14403-11. PubMed ID: 15533045 [TBL] [Abstract][Full Text] [Related]
10. Site-specific effects of zinc on the activity of family II pyrophosphatase. Zyryanov AB; Tammenkoski M; Salminen A; Kolomiytseva GY; Fabrichniy IP; Goldman A; Lahti R; Baykov AA Biochemistry; 2004 Nov; 43(45):14395-402. PubMed ID: 15533044 [TBL] [Abstract][Full Text] [Related]
11. Tetrameric Structures of Inorganic CBS-Pyrophosphatases from Various Bacterial Species Revealed by Small-Angle X-ray Scattering in Solution. Dadinova LA; Soshinskaia EY; Jeffries CM; Svergun DI; Shtykova EV Biomolecules; 2020 Apr; 10(4):. PubMed ID: 32272694 [TBL] [Abstract][Full Text] [Related]
12. Cystathionine β-synthase (CBS) domains confer multiple forms of Mg2+-dependent cooperativity to family II pyrophosphatases. Salminen A; Anashkin VA; Lahti M; Tuominen HK; Lahti R; Baykov AA J Biol Chem; 2014 Aug; 289(33):22865-22876. PubMed ID: 24986864 [TBL] [Abstract][Full Text] [Related]
13. Fast kinetics of nucleotide binding to Clostridium perfringens family II pyrophosphatase containing CBS and DRTGG domains. Jämsen J; Baykov AA; Lahti R Biochemistry (Mosc); 2012 Feb; 77(2):165-70. PubMed ID: 22348476 [TBL] [Abstract][Full Text] [Related]
14. Specific Mutations Reverse Regulatory Effects of Adenosine Phosphates and Increase Their Binding Stoichiometry in CBS Domain-Containing Pyrophosphatase. Anashkin VA; Kirillova EA; Orlov VN; Baykov AA Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891956 [TBL] [Abstract][Full Text] [Related]
15. The inorganic pyrophosphatases of microorganisms: a structural and functional review. García-Contreras R; de la Mora J; Mora-Montes HM; Martínez-Álvarez JA; Vicente-Gómez M; Padilla-Vaca F; Vargas-Maya NI; Franco B PeerJ; 2024; 12():e17496. PubMed ID: 38938619 [TBL] [Abstract][Full Text] [Related]
16. Structural and Biochemical Characterization of Apicomplexan Inorganic Pyrophosphatases. Jamwal A; Yogavel M; Abdin MZ; Jain SK; Sharma A Sci Rep; 2017 Jul; 7(1):5255. PubMed ID: 28701714 [TBL] [Abstract][Full Text] [Related]
17. Substitutions of glycine residues Gly100 and Gly147 in conservative loops decrease rates of conformational rearrangements of Escherichia coli inorganic pyrophosphatase. Moiseev VM; Rodina EV; Kurilova SA; Vorobyeva NN; Nazarova TI; Avaeva SM Biochemistry (Mosc); 2005 Aug; 70(8):858-66. PubMed ID: 16212541 [TBL] [Abstract][Full Text] [Related]
18. An asparagine residue mediates intramolecular communication in nucleotide-regulated pyrophosphatase. Anashkin VA; Salminen A; Vorobjeva NN; Lahti R; Baykov AA Biochem J; 2016 Jul; 473(14):2097-107. PubMed ID: 27208172 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Lin SM; Tsai JY; Hsiao CD; Huang YT; Chiu CL; Liu MH; Tung JY; Liu TH; Pan RL; Sun YJ Nature; 2012 Mar; 484(7394):399-403. PubMed ID: 22456709 [TBL] [Abstract][Full Text] [Related]
20. Roles of nucleotide substructures in the regulation of cystathionine β-synthase domain-containing pyrophosphatase. Anashkin VA; Aksenova VA; Vorobyeva NN; Baykov AA Biochim Biophys Acta Gen Subj; 2019 Aug; 1863(8):1263-1269. PubMed ID: 31103750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]