BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28986995)

  • 21. Enzyme cascade converting cyclohexanol into ε-caprolactone coupled with NADPH recycling using surface displayed alcohol dehydrogenase and cyclohexanone monooxygenase on E. coli.
    Tian H; Furtmann C; Lenz F; Srinivasamurthy V; Bornscheuer UT; Jose J
    Microb Biotechnol; 2022 Aug; 15(8):2235-2249. PubMed ID: 35478318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-pot synthesis of 6-aminohexanoic acid from cyclohexane using mixed-species cultures.
    Bretschneider L; Wegner M; Bühler K; Bühler B; Karande R
    Microb Biotechnol; 2021 May; 14(3):1011-1025. PubMed ID: 33369139
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fusion proteins of an enoate reductase and a Baeyer-Villiger monooxygenase facilitate the synthesis of chiral lactones.
    Peters C; Rudroff F; Mihovilovic MD; T Bornscheuer U
    Biol Chem; 2017 Jan; 398(1):31-37. PubMed ID: 27289001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering of Pseudomonas taiwanensis VLB120 for constitutive solvent tolerance and increased specific styrene epoxidation activity.
    Volmer J; Neumann C; Bühler B; Schmid A
    Appl Environ Microbiol; 2014 Oct; 80(20):6539-48. PubMed ID: 25128338
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The metabolism of cyclohexanol by Nocardia globerula CL1.
    Norris DB; Trudgill PW
    Biochem J; 1971 Feb; 121(3):363-70. PubMed ID: 5119767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transforming Inert Cycloalkanes into α,ω-Diamines by Designed Enzymatic Cascade Catalysis.
    Zhang Z; Fang L; Wang F; Deng Y; Jiang Z; Li A
    Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202215935. PubMed ID: 36840725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intermediate product control in cascade reaction for one-pot production of ε-caprolactone by Escherichia coli.
    Chen H; Liu R; Cai S; Zhang Y; Zhu C; Yu H; Li S
    Biotechnol J; 2024 Feb; 19(2):e2300210. PubMed ID: 38403458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous multistep synthesis of perillic acid from limonene by catalytic biofilms under segmented flow.
    Willrodt C; Halan B; Karthaus L; Rehdorf J; Julsing MK; Buehler K; Schmid A
    Biotechnol Bioeng; 2017 Feb; 114(2):281-290. PubMed ID: 27530691
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-pot biocatalytic route from cycloalkanes to α,ω-dicarboxylic acids by designed Escherichia coli consortia.
    Wang F; Zhao J; Li Q; Yang J; Li R; Min J; Yu X; Zheng GW; Yu HL; Zhai C; Acevedo-Rocha CG; Ma L; Li A
    Nat Commun; 2020 Oct; 11(1):5035. PubMed ID: 33028823
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Heuschkel I; Hanisch S; Volke DC; Löfgren E; Hoschek A; Nikel PI; Karande R; Bühler K
    Eng Life Sci; 2021 Mar; 21(3-4):258-269. PubMed ID: 33716623
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biocatalytic Route for the Synthesis of Oligoesters of Hydroxy-Fatty acids and ϵ-Caprolactone.
    Todea A; Aparaschivei D; Badea V; Boeriu CG; Peter F
    Biotechnol J; 2018 Jun; 13(6):e1700629. PubMed ID: 29542861
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic insights into ϵ-caprolactone synthesis: Improvement of an enzymatic cascade reaction.
    Scherkus C; Schmidt S; Bornscheuer UT; Gröger H; Kara S; Liese A
    Biotechnol Bioeng; 2017 Jun; 114(6):1215-1221. PubMed ID: 28112389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. C3 and C6 Modification-Specific OYE Biotransformations of Synthetic Carvones and Sequential BVMO Chemoenzymatic Synthesis of Chiral Caprolactones.
    Issa IS; Toogood HS; Johannissen LO; Raftery J; Scrutton NS; Gardiner JM
    Chemistry; 2019 Feb; 25(12):2983-2988. PubMed ID: 30468546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Making variability less variable: matching expression system and host for oxygenase-based biotransformations.
    Lindmeyer M; Meyer D; Kuhn D; Bühler B; Schmid A
    J Ind Microbiol Biotechnol; 2015 Jun; 42(6):851-66. PubMed ID: 25877162
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directed evolution of phenylacetone monooxygenase as an active catalyst for the Baeyer-Villiger conversion of cyclohexanone to caprolactone.
    Parra LP; Acevedo JP; Reetz MT
    Biotechnol Bioeng; 2015 Jul; 112(7):1354-64. PubMed ID: 25675885
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactor operation and scale-up of whole cell Baeyer-Villiger catalyzed lactone synthesis.
    Doig SD; Avenell PJ; Bird PA; Gallati P; Lander KS; Lye GJ; Wohlgemuth R; Woodley JM
    Biotechnol Prog; 2002; 18(5):1039-46. PubMed ID: 12363355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation.
    Park JB; Bühler B; Habicher T; Hauer B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2006 Oct; 95(3):501-12. PubMed ID: 16767777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lactone-bound structures of cyclohexanone monooxygenase provide insight into the stereochemistry of catalysis.
    Yachnin BJ; McEvoy MB; MacCuish RJ; Morley KL; Lau PC; Berghuis AM
    ACS Chem Biol; 2014 Dec; 9(12):2843-51. PubMed ID: 25265531
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel cyclohexane monooxygenase from Acidovorax sp. CHX100.
    Salamanca D; Karande R; Schmid A; Dobslaw D
    Appl Microbiol Biotechnol; 2015 Aug; 99(16):6889-97. PubMed ID: 25935342
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of two novel strains capable of using cyclohexane as carbon source.
    Salamanca D; Engesser KH
    Environ Sci Pollut Res Int; 2014 Nov; 21(22):12757-66. PubMed ID: 24969427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.