BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 28986995)

  • 41. Tolerance and metabolic response of
    Wordofa GG; Kristensen M
    Biotechnol Biofuels; 2018; 11():199. PubMed ID: 30034525
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An Alcohol Dehydrogenase from the Short-Chain Dehydrogenase/Reductase Family of Enzymes for the Lactonization of Hexane-1,6-diol.
    Dithugoe CD; van Marwijk J; Smit MS; Opperman DJ
    Chembiochem; 2019 Jan; 20(1):96-102. PubMed ID: 30252998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Co-expression of an alcohol dehydrogenase and a cyclohexanone monooxygenase for cascade reactions facilitates the regeneration of the NADPH cofactor.
    Kohl A; Srinivasamurthy V; Böttcher D; Kabisch J; Bornscheuer UT
    Enzyme Microb Technol; 2018 Jan; 108():53-58. PubMed ID: 29108627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites.
    Lang K; Zierow J; Buehler K; Schmid A
    Microb Cell Fact; 2014 Jan; 13():2. PubMed ID: 24397404
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparative study of the ability of three xanthobacter species to metabolize cycloalkanes.
    Magor AM; Warburton J; Trower MK; Griffin M
    Appl Environ Microbiol; 1986 Oct; 52(4):665-71. PubMed ID: 16347162
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
    Bühler B; Park JB; Blank LM; Schmid A
    Appl Environ Microbiol; 2008 Mar; 74(5):1436-46. PubMed ID: 18192422
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases.
    Alphand V; Carrea G; Wohlgemuth R; Furstoss R; Woodley JM
    Trends Biotechnol; 2003 Jul; 21(7):318-23. PubMed ID: 12837617
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microscale process evaluation of recombinant biocatalyst libraries: application to Baeyer-Villiger monooxygenase catalysed lactone synthesis.
    Ferreira-Torres C; Micheletti M; Lye GJ
    Bioprocess Biosyst Eng; 2005 Nov; 28(2):83-93. PubMed ID: 16208497
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A biocatalytic cascade for the amination of unfunctionalised cycloalkanes.
    Tavanti M; Mangas-Sanchez J; Montgomery SL; Thompson MP; Turner NJ
    Org Biomol Chem; 2017 Nov; 15(46):9790-9793. PubMed ID: 29147696
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions.
    Walton AZ; Stewart JD
    Biotechnol Prog; 2002; 18(2):262-8. PubMed ID: 11934294
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tuning a bi-enzymatic cascade reaction in Escherichia coli to facilitate NADPH regeneration for ε-caprolactone production.
    Xiong J; Chen H; Liu R; Yu H; Zhuo M; Zhou T; Li S
    Bioresour Bioprocess; 2021 Apr; 8(1):32. PubMed ID: 38650214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic engineering of Pseudomonas taiwanensis VLB120 with minimal genomic modifications for high-yield phenol production.
    Wynands B; Lenzen C; Otto M; Koch F; Blank LM; Wierckx N
    Metab Eng; 2018 May; 47():121-133. PubMed ID: 29548982
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A whole cell biocatalyst for double oxidation of cyclooctane.
    Müller CA; Weingartner AM; Dennig A; Ruff AJ; Gröger H; Schwaneberg U
    J Ind Microbiol Biotechnol; 2016 Dec; 43(12):1641-1646. PubMed ID: 27771781
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparative scale Baeyer-Villiger biooxidation at high concentration using recombinant Escherichia coli and in situ substrate feeding and product removal process.
    Hilker I; Gutiérrez MC; Furstoss R; Ward J; Wohlgemuth R; Alphand V
    Nat Protoc; 2008; 3(3):546-54. PubMed ID: 18323823
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rational Engineering of Phenylalanine Accumulation in
    Otto M; Wynands B; Lenzen C; Filbig M; Blank LM; Wierckx N
    Front Bioeng Biotechnol; 2019; 7():312. PubMed ID: 31824929
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Broadening the scope of Baeyer-Villiger monooxygenase activities toward α,β-unsaturated ketones: a promising route to chiral enol-lactones and ene-lactones.
    Reignier T; de Berardinis V; Petit JL; Mariage A; Hamzé K; Duquesne K; Alphand V
    Chem Commun (Camb); 2014 Jul; 50(58):7793-6. PubMed ID: 24903773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. On the influence of oxygen and cell concentration in an SFPR whole cell biocatalytic Baeyer-Villiger oxidation process.
    Hilker I; Baldwin C; Alphand V; Furstoss R; Woodley J; Wohlgemuth R
    Biotechnol Bioeng; 2006 Apr; 93(6):1138-44. PubMed ID: 16444739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands.
    Kuhn D; Fritzsch FS; Zhang X; Wendisch VF; Blank LM; Bühler B; Schmid A
    J Biotechnol; 2013 Jan; 163(2):194-203. PubMed ID: 22922011
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Yield Production of 4-Hydroxybenzoate From Glucose or Glycerol by an Engineered
    Lenzen C; Wynands B; Otto M; Bolzenius J; Mennicken P; Blank LM; Wierckx N
    Front Bioeng Biotechnol; 2019; 7():130. PubMed ID: 31245364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.