These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 2898729)

  • 21. 3' RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes.
    Edwalds-Gilbert G; Prescott J; Falck-Pedersen E
    Mol Cell Biol; 1993 Jun; 13(6):3472-80. PubMed ID: 7684499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequences on the 3' side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site.
    Sadofsky M; Alwine JC
    Mol Cell Biol; 1984 Aug; 4(8):1460-8. PubMed ID: 6149460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location.
    MacDonald CC; Wilusz J; Shenk T
    Mol Cell Biol; 1994 Oct; 14(10):6647-54. PubMed ID: 7935383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro cleavage of the simian virus 40 early polyadenylation site adjacent to a required downstream TG sequence.
    Sperry AO; Berget SM
    Mol Cell Biol; 1986 Dec; 6(12):4734-41. PubMed ID: 3025668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cleavage site determinants in the mammalian polyadenylation signal.
    Chen F; MacDonald CC; Wilusz J
    Nucleic Acids Res; 1995 Jul; 23(14):2614-20. PubMed ID: 7651822
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates.
    Wilusz J; Shenk T; Takagaki Y; Manley JL
    Mol Cell Biol; 1990 Mar; 10(3):1244-8. PubMed ID: 2304466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyadenylation-specific complexes undergo a transition early in the polymerization of a poly(A) tail.
    Bardwell VJ; Wickens M
    Mol Cell Biol; 1990 Jan; 10(1):295-302. PubMed ID: 2294406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Are U4 small nuclear ribonucleoproteins involved in polyadenylation?
    Berget SM
    Nature; 1984 May 10-16; 309(5964):179-82. PubMed ID: 6325940
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate cleavage and polyadenylation of exogenous RNA substrate.
    Moore CL; Sharp PA
    Cell; 1985 Jul; 41(3):845-55. PubMed ID: 2408761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two G-rich regulatory elements located adjacent to and 440 nucleotides downstream of the core poly(A) site of the intronless melanocortin receptor 1 gene are critical for efficient 3' end processing.
    Dalziel M; Nunes NM; Furger A
    Mol Cell Biol; 2007 Mar; 27(5):1568-80. PubMed ID: 17189425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of RNase-A-resistant regions of adenovirus 2 major late precursor-mRNA in splicing extracts reveals an ordered interaction of nuclear components with the substrate RNA.
    Krämer A
    J Mol Biol; 1987 Aug; 196(3):559-73. PubMed ID: 3681967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An intron enhancer recognized by splicing factors activates polyadenylation.
    Lou H; Gagel RF; Berget SM
    Genes Dev; 1996 Jan; 10(2):208-19. PubMed ID: 8566754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of RNA cleavage but not polyadenylation by a point mutation in mRNA 3' consensus sequence AAUAAA.
    Montell C; Fisher EF; Caruthers MH; Berk AJ
    Nature; 1983 Oct 13-19; 305(5935):600-5. PubMed ID: 6194440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements.
    Bilger A; Fox CA; Wahle E; Wickens M
    Genes Dev; 1994 May; 8(9):1106-16. PubMed ID: 7926790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maturation-specific polyadenylation and translational control: diversity of cytoplasmic polyadenylation elements, influence of poly(A) tail size, and formation of stable polyadenylation complexes.
    Paris J; Richter JD
    Mol Cell Biol; 1990 Nov; 10(11):5634-45. PubMed ID: 1700272
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Components required for in vitro cleavage and polyadenylation of eukaryotic mRNA.
    McLauchlan J; Moore CL; Simpson S; Clements JB
    Nucleic Acids Res; 1988 Jun; 16(12):5323-44. PubMed ID: 2898767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The secondary structure of the adenovirus-2 L4 polyadenylation domain: evidence for a hairpin structure exposing the AAUAAA signal in its loop.
    Sittler A; Gallinaro H; Jacob M
    J Mol Biol; 1995 May; 248(3):525-40. PubMed ID: 7752222
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ADP is a substrate for the AAUAAA-directed poly(A) addition reaction catalyzed by HeLa cell nuclear extracts.
    Lakota J; Nelson BD
    Eur J Biochem; 1991 Feb; 195(3):685-9. PubMed ID: 1999190
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A history of poly A sequences: from formation to factors to function.
    Edmonds M
    Prog Nucleic Acid Res Mol Biol; 2002; 71():285-389. PubMed ID: 12102557
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of mRNA 3' termini: stability and dissociation of a complex involving the AAUAAA sequence.
    Zarkower D; Wickens M
    EMBO J; 1987 Jan; 6(1):177-86. PubMed ID: 2438129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.