BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28987450)

  • 1. Differing responses of the estuarine bivalve Limecola balthica to lowered water pH caused by potential CO
    Sokołowski A; Brulińska D; Mirny Z; Burska D; Pryputniewicz-Flis D
    Mar Pollut Bull; 2018 Feb; 127():761-773. PubMed ID: 28987450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular level response of the bivalve Limecola balthica to seawater acidification due to potential CO
    Sokołowski A; Świeżak J; Hallmann A; Olsen AJ; Ziółkowska M; Øverjordet IB; Nordtug T; Altin D; Krause DF; Salaberria I; Smolarz K
    Sci Total Environ; 2021 Nov; 794():148593. PubMed ID: 34323752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of environmental hypercapnia on fertilization success rate and the early embryonic development of the clam Limecola balthica (Bivalvia, Tellinidae) from the southern Baltic Sea - A potential CO
    Świeżak J; Borrero-Santiago AR; Sokołowski A; Olsen AJ
    Mar Pollut Bull; 2018 Nov; 136():201-211. PubMed ID: 30509800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral responses of Arctica islandica (Bivalvia: Arcticidae) to simulated leakages of carbon dioxide from sub-sea geological storage.
    Bamber SD; Westerlund S
    Aquat Toxicol; 2016 Nov; 180():295-305. PubMed ID: 27776295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of low seawater pH on energy storage and heat shock protein 70 expression in a bivalve Limecola balthica.
    Sokołowski A; Brulińska D
    Mar Environ Res; 2018 Sep; 140():289-298. PubMed ID: 30251647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogeographic vulnerability to ocean acidification and warming in a marine bivalve.
    Van Colen C; Jansson A; Saunier A; Lacoue-Labathe T; Vincx M
    Mar Pollut Bull; 2018 Jan; 126():308-311. PubMed ID: 29421102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions.
    Murray F; Widdicombe S; McNeill CL; Solan M
    Mar Pollut Bull; 2013 Aug; 73(2):435-42. PubMed ID: 23219529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lethal and sublethal responses in the clam Scrobicularia plana exposed to different CO
    Conradi M; Riba I; Almagro-Pastor V; DelValls TA
    Environ Res; 2016 Nov; 151():642-652. PubMed ID: 27619209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves.
    Basallote MD; Rodríguez-Romero A; De Orte MR; Del Valls TÁ; Riba I
    Aquat Toxicol; 2015 Sep; 166():63-71. PubMed ID: 26240951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lethal and sub-lethal effects of elevated CO2 concentrations on marine benthic invertebrates and fish.
    Lee C; Hong S; Kwon BO; Lee JH; Ryu J; Park YG; Kang SG; Khim JS
    Environ Sci Pollut Res Int; 2016 Aug; 23(15):14945-56. PubMed ID: 27074931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate change mitigation effects: How do potential CO
    Bonnail E; Borrero-Santiago AR; Nordtug T; Øverjordet IB; Krause DF; Ardelan MV
    Chemosphere; 2021 Feb; 264(Pt 2):128552. PubMed ID: 33065323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulated leakage of high pCO2 water negatively impacts bivalve dominated infaunal communities from the Western Baltic Sea.
    Schade H; Mevenkamp L; Guilini K; Meyer S; Gorb SN; Abele D; Vanreusel A; Melzner F
    Sci Rep; 2016 Aug; 6():31447. PubMed ID: 27538361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of potential leakage from the sub-seabed CO
    Łukawska-Matuszewska K; Graca B; Sokołowski A; Burska D; Pryputniewicz-Flis D; Nordtug T; Øverjordet IB
    Sci Total Environ; 2023 Aug; 886():163879. PubMed ID: 37142039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification.
    Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F
    Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in the macrobenthic fauna from Guadarranque River (Southern Spain) associated with sediment-seawater acidification deriving from CO2 leakage.
    Almagro-Pastor V; Conradi M; DelValls TA; Riba I
    Mar Pollut Bull; 2015 Jul; 96(1-2):65-75. PubMed ID: 26021290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of sub-seabed CO
    Amaro T; Bertocci I; Queiros AM; Rastelli E; Borgersen G; Brkljacic M; Nunes J; Sorensen K; Danovaro R; Widdicombe S
    Mar Pollut Bull; 2018 Mar; 128():519-526. PubMed ID: 29571404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis.
    Hu MY; Casties I; Stumpp M; Ortega-Martinez O; Dupont S
    J Exp Biol; 2014 Jul; 217(Pt 13):2411-21. PubMed ID: 24737772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Rastelli E; Corinaldesi C; Dell'Anno A; Amaro T; Greco S; Lo Martire M; Carugati L; Queirós AM; Widdicombe S; Danovaro R
    Mar Environ Res; 2016 Dec; 122():158-168. PubMed ID: 27816195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Behavioral responses of brown shrimp (Crangon crangon) to reduced seawater pH following simulated leakages from sub-sea geological storage of CO2.
    Bamber SD; Westerlund S
    J Toxicol Environ Health A; 2016; 79(13-15):526-37. PubMed ID: 27484135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria.
    Borrero-Santiago AR; DelValls TA; Riba I
    Ecotoxicol Environ Saf; 2016 Sep; 131():157-63. PubMed ID: 27107627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.