These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 28987450)
1. Differing responses of the estuarine bivalve Limecola balthica to lowered water pH caused by potential CO Sokołowski A; Brulińska D; Mirny Z; Burska D; Pryputniewicz-Flis D Mar Pollut Bull; 2018 Feb; 127():761-773. PubMed ID: 28987450 [TBL] [Abstract][Full Text] [Related]
2. Cellular level response of the bivalve Limecola balthica to seawater acidification due to potential CO Sokołowski A; Świeżak J; Hallmann A; Olsen AJ; Ziółkowska M; Øverjordet IB; Nordtug T; Altin D; Krause DF; Salaberria I; Smolarz K Sci Total Environ; 2021 Nov; 794():148593. PubMed ID: 34323752 [TBL] [Abstract][Full Text] [Related]
3. Impact of environmental hypercapnia on fertilization success rate and the early embryonic development of the clam Limecola balthica (Bivalvia, Tellinidae) from the southern Baltic Sea - A potential CO Świeżak J; Borrero-Santiago AR; Sokołowski A; Olsen AJ Mar Pollut Bull; 2018 Nov; 136():201-211. PubMed ID: 30509800 [TBL] [Abstract][Full Text] [Related]
4. Behavioral responses of Arctica islandica (Bivalvia: Arcticidae) to simulated leakages of carbon dioxide from sub-sea geological storage. Bamber SD; Westerlund S Aquat Toxicol; 2016 Nov; 180():295-305. PubMed ID: 27776295 [TBL] [Abstract][Full Text] [Related]
5. The effects of low seawater pH on energy storage and heat shock protein 70 expression in a bivalve Limecola balthica. Sokołowski A; Brulińska D Mar Environ Res; 2018 Sep; 140():289-298. PubMed ID: 30251647 [TBL] [Abstract][Full Text] [Related]
6. Biogeographic vulnerability to ocean acidification and warming in a marine bivalve. Van Colen C; Jansson A; Saunier A; Lacoue-Labathe T; Vincx M Mar Pollut Bull; 2018 Jan; 126():308-311. PubMed ID: 29421102 [TBL] [Abstract][Full Text] [Related]
7. Consequences of a simulated rapid ocean acidification event for benthic ecosystem processes and functions. Murray F; Widdicombe S; McNeill CL; Solan M Mar Pollut Bull; 2013 Aug; 73(2):435-42. PubMed ID: 23219529 [TBL] [Abstract][Full Text] [Related]
8. Lethal and sublethal responses in the clam Scrobicularia plana exposed to different CO Conradi M; Riba I; Almagro-Pastor V; DelValls TA Environ Res; 2016 Nov; 151():642-652. PubMed ID: 27619209 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves. Basallote MD; Rodríguez-Romero A; De Orte MR; Del Valls TÁ; Riba I Aquat Toxicol; 2015 Sep; 166():63-71. PubMed ID: 26240951 [TBL] [Abstract][Full Text] [Related]
10. Lethal and sub-lethal effects of elevated CO2 concentrations on marine benthic invertebrates and fish. Lee C; Hong S; Kwon BO; Lee JH; Ryu J; Park YG; Kang SG; Khim JS Environ Sci Pollut Res Int; 2016 Aug; 23(15):14945-56. PubMed ID: 27074931 [TBL] [Abstract][Full Text] [Related]
12. Simulated leakage of high pCO2 water negatively impacts bivalve dominated infaunal communities from the Western Baltic Sea. Schade H; Mevenkamp L; Guilini K; Meyer S; Gorb SN; Abele D; Vanreusel A; Melzner F Sci Rep; 2016 Aug; 6():31447. PubMed ID: 27538361 [TBL] [Abstract][Full Text] [Related]
13. The impact of potential leakage from the sub-seabed CO Łukawska-Matuszewska K; Graca B; Sokołowski A; Burska D; Pryputniewicz-Flis D; Nordtug T; Øverjordet IB Sci Total Environ; 2023 Aug; 886():163879. PubMed ID: 37142039 [TBL] [Abstract][Full Text] [Related]
14. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification. Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465 [TBL] [Abstract][Full Text] [Related]
15. Alterations in the macrobenthic fauna from Guadarranque River (Southern Spain) associated with sediment-seawater acidification deriving from CO2 leakage. Almagro-Pastor V; Conradi M; DelValls TA; Riba I Mar Pollut Bull; 2015 Jul; 96(1-2):65-75. PubMed ID: 26021290 [TBL] [Abstract][Full Text] [Related]
16. Effects of sub-seabed CO Amaro T; Bertocci I; Queiros AM; Rastelli E; Borgersen G; Brkljacic M; Nunes J; Sorensen K; Danovaro R; Widdicombe S Mar Pollut Bull; 2018 Mar; 128():519-526. PubMed ID: 29571404 [TBL] [Abstract][Full Text] [Related]
17. Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis. Hu MY; Casties I; Stumpp M; Ortega-Martinez O; Dupont S J Exp Biol; 2014 Jul; 217(Pt 13):2411-21. PubMed ID: 24737772 [TBL] [Abstract][Full Text] [Related]
18. CO Rastelli E; Corinaldesi C; Dell'Anno A; Amaro T; Greco S; Lo Martire M; Carugati L; Queirós AM; Widdicombe S; Danovaro R Mar Environ Res; 2016 Dec; 122():158-168. PubMed ID: 27816195 [TBL] [Abstract][Full Text] [Related]
19. Behavioral responses of brown shrimp (Crangon crangon) to reduced seawater pH following simulated leakages from sub-sea geological storage of CO2. Bamber SD; Westerlund S J Toxicol Environ Health A; 2016; 79(13-15):526-37. PubMed ID: 27484135 [TBL] [Abstract][Full Text] [Related]
20. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria. Borrero-Santiago AR; DelValls TA; Riba I Ecotoxicol Environ Saf; 2016 Sep; 131():157-63. PubMed ID: 27107627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]