These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 28987450)
21. Laboratory simulation system, using Carcinus maenas as the model organism, for assessing the impact of CO2 leakage from sub-seabed injection and storage. Rodríguez-Romero A; Jiménez-Tenorio N; Riba I; Blasco J Environ Res; 2016 Jan; 144(Pt A):117-129. PubMed ID: 26599590 [TBL] [Abstract][Full Text] [Related]
22. Metal sources to the Baltic clam Macoma balthica (Mollusca: Bivalvia) in the southern Baltic Sea (the Gulf of Gdansk). Sokolowski A; Wolowicz M; Hummel H Mar Environ Res; 2007 Apr; 63(3):236-56. PubMed ID: 17092554 [TBL] [Abstract][Full Text] [Related]
23. Lethal effects on different marine organisms, associated with sediment-seawater acidification deriving from CO2 leakage. Basallote MD; Rodríguez-Romero A; Blasco J; DelValls A; Riba I Environ Sci Pollut Res Int; 2011 Aug; 19(7):2550-60. PubMed ID: 22828884 [TBL] [Abstract][Full Text] [Related]
24. Impact of elevated levels of CO2 on animal mediated ecosystem function: the modification of sediment nutrient fluxes by burrowing urchins. Widdicombe S; Beesley A; Berge JA; Dashfield SL; McNeill CL; Needham HR; Øxnevad S Mar Pollut Bull; 2013 Aug; 73(2):416-27. PubMed ID: 23218873 [TBL] [Abstract][Full Text] [Related]
25. Effects of CO Clements JC; Hunt HL Mar Pollut Bull; 2017 Apr; 117(1-2):6-16. PubMed ID: 28143647 [TBL] [Abstract][Full Text] [Related]
26. Bioenergetic trade-offs in the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea) in response to CO2-driven ocean acidification. Yuan X; Shao S; Yang X; Yang D; Xu Q; Zong H; Liu S Environ Sci Pollut Res Int; 2016 May; 23(9):8453-61. PubMed ID: 26782325 [TBL] [Abstract][Full Text] [Related]
27. Simulating CO₂ leakages from CCS to determine Zn toxicity using the marine microalgae Pleurochrysis roscoffensis. Bautista-Chamizo E; De Orte MR; DelValls TÁ; Riba I Chemosphere; 2016 Feb; 144():955-65. PubMed ID: 26432538 [TBL] [Abstract][Full Text] [Related]
28. Assessing the influence of ocean acidification to marine amphipods: A comparative study. Passarelli MC; Riba I; Cesar A; Serrano-Bernando F; DelValls TA Sci Total Environ; 2017 Oct; 595():759-768. PubMed ID: 28407593 [TBL] [Abstract][Full Text] [Related]
30. Potential acidification impacts on zooplankton in CCS leakage scenarios. Halsband C; Kurihara H Mar Pollut Bull; 2013 Aug; 73(2):495-503. PubMed ID: 23632089 [TBL] [Abstract][Full Text] [Related]
31. Assessment of the environmental impacts of ocean acidification (OA) and carbon capture and storage (CCS) leaks using the amphipod Hyale youngi. Goulding TA; De Orte MR; Szalaj D; Basallote MD; DelValls TA; Cesar A Ecotoxicology; 2017 May; 26(4):521-533. PubMed ID: 28315979 [TBL] [Abstract][Full Text] [Related]
32. Does seawater acidification affect survival, growth and shell integrity in bivalve juveniles? Bressan M; Chinellato A; Munari M; Matozzo V; Manci A; Marčeta T; Finos L; Moro I; Pastore P; Badocco D; Marin MG Mar Environ Res; 2014 Aug; 99():136-48. PubMed ID: 24836120 [TBL] [Abstract][Full Text] [Related]
33. Predicting the impacts of CO2 leakage from subseabed storage: effects of metal accumulation and toxicity on the model benthic organism Ruditapes philippinarum. Rodríguez-Romero A; Jiménez-Tenorio N; Basallote MD; De Orte MR; Blasco J; Riba I Environ Sci Technol; 2014 Oct; 48(20):12292-301. PubMed ID: 25221911 [TBL] [Abstract][Full Text] [Related]
34. The effects of ocean acidification and a carbon dioxide capture and storage leak on the early life stages of the marine mussel Perna perna (Linneaus, 1758) and metal bioavailability. Szalaj D; De Orte MR; Goulding TA; Medeiros ID; DelValls TA; Cesar A Environ Sci Pollut Res Int; 2017 Jan; 24(1):765-781. PubMed ID: 27752956 [TBL] [Abstract][Full Text] [Related]
35. Evaluation through column leaching tests of metal release from contaminated estuarine sediment subject to CO₂ leakages from Carbon Capture and Storage sites. Payán MC; Galan B; Coz A; Vandecasteele C; Viguri JR Environ Pollut; 2012 Dec; 171():174-84. PubMed ID: 22926654 [TBL] [Abstract][Full Text] [Related]
36. Coping with seawater acidification and the emerging contaminant diclofenac at the larval stage: A tale from the clam Ruditapes philippinarum. Munari M; Chemello G; Finos L; Ingrosso G; Giani M; Marin MG Chemosphere; 2016 Oct; 160():293-302. PubMed ID: 27391052 [TBL] [Abstract][Full Text] [Related]
37. Effects on the mobility of metals from acidification caused by possible CO₂ leakage from sub-seabed geological formations. de Orte MR; Sarmiento AM; Basallote MD; Rodríguez-Romero A; Riba I; Delvalls A Sci Total Environ; 2014 Feb; 470-471():356-63. PubMed ID: 24144940 [TBL] [Abstract][Full Text] [Related]
38. Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico. Pettit LR; Hart MB; Medina-Sánchez AN; Smart CW; Rodolfo-Metalpa R; Hall-Spencer JM; Prol-Ledesma RM Mar Pollut Bull; 2013 Aug; 73(2):452-62. PubMed ID: 23473095 [TBL] [Abstract][Full Text] [Related]
39. Transcriptome of the bivalve Limecola balthica L. from Western Pacific: A new resource for studies of European populations. Yurchenko AA; Katolikova N; Polev D; Shcherbakova I; Strelkov P Mar Genomics; 2018 Jul; 40():58-63. PubMed ID: 29657123 [TBL] [Abstract][Full Text] [Related]
40. Genotoxic and cytotoxic effects of 50 Hz 1 mT electromagnetic field on larval rainbow trout (Oncorhynchus mykiss), Baltic clam (Limecola balthica) and common ragworm (Hediste diversicolor). Stankevičiūtė M; Jakubowska M; Pažusienė J; Makaras T; Otremba Z; Urban-Malinga B; Fey DP; Greszkiewicz M; Sauliutė G; Baršienė J; Andrulewicz E Aquat Toxicol; 2019 Mar; 208():109-117. PubMed ID: 30641415 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]