BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28987450)

  • 21. Laboratory simulation system, using Carcinus maenas as the model organism, for assessing the impact of CO2 leakage from sub-seabed injection and storage.
    Rodríguez-Romero A; Jiménez-Tenorio N; Riba I; Blasco J
    Environ Res; 2016 Jan; 144(Pt A):117-129. PubMed ID: 26599590
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal sources to the Baltic clam Macoma balthica (Mollusca: Bivalvia) in the southern Baltic Sea (the Gulf of Gdansk).
    Sokolowski A; Wolowicz M; Hummel H
    Mar Environ Res; 2007 Apr; 63(3):236-56. PubMed ID: 17092554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lethal effects on different marine organisms, associated with sediment-seawater acidification deriving from CO2 leakage.
    Basallote MD; Rodríguez-Romero A; Blasco J; DelValls A; Riba I
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):2550-60. PubMed ID: 22828884
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of elevated levels of CO2 on animal mediated ecosystem function: the modification of sediment nutrient fluxes by burrowing urchins.
    Widdicombe S; Beesley A; Berge JA; Dashfield SL; McNeill CL; Needham HR; Øxnevad S
    Mar Pollut Bull; 2013 Aug; 73(2):416-27. PubMed ID: 23218873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of CO
    Clements JC; Hunt HL
    Mar Pollut Bull; 2017 Apr; 117(1-2):6-16. PubMed ID: 28143647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioenergetic trade-offs in the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea) in response to CO2-driven ocean acidification.
    Yuan X; Shao S; Yang X; Yang D; Xu Q; Zong H; Liu S
    Environ Sci Pollut Res Int; 2016 May; 23(9):8453-61. PubMed ID: 26782325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simulating CO₂ leakages from CCS to determine Zn toxicity using the marine microalgae Pleurochrysis roscoffensis.
    Bautista-Chamizo E; De Orte MR; DelValls TÁ; Riba I
    Chemosphere; 2016 Feb; 144():955-65. PubMed ID: 26432538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing the influence of ocean acidification to marine amphipods: A comparative study.
    Passarelli MC; Riba I; Cesar A; Serrano-Bernando F; DelValls TA
    Sci Total Environ; 2017 Oct; 595():759-768. PubMed ID: 28407593
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The societal challenge of ocean acidification.
    Turley C; Eby M; Ridgwell AJ; Schmidt DN; Findlay HS; Brownlee C; Riebesell U; Fabry VJ; Feely RA; Gattuso JP
    Mar Pollut Bull; 2010 Jun; 60(6):787-92. PubMed ID: 20538146
    [No Abstract]   [Full Text] [Related]  

  • 30. Potential acidification impacts on zooplankton in CCS leakage scenarios.
    Halsband C; Kurihara H
    Mar Pollut Bull; 2013 Aug; 73(2):495-503. PubMed ID: 23632089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessment of the environmental impacts of ocean acidification (OA) and carbon capture and storage (CCS) leaks using the amphipod Hyale youngi.
    Goulding TA; De Orte MR; Szalaj D; Basallote MD; DelValls TA; Cesar A
    Ecotoxicology; 2017 May; 26(4):521-533. PubMed ID: 28315979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does seawater acidification affect survival, growth and shell integrity in bivalve juveniles?
    Bressan M; Chinellato A; Munari M; Matozzo V; Manci A; Marčeta T; Finos L; Moro I; Pastore P; Badocco D; Marin MG
    Mar Environ Res; 2014 Aug; 99():136-48. PubMed ID: 24836120
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting the impacts of CO2 leakage from subseabed storage: effects of metal accumulation and toxicity on the model benthic organism Ruditapes philippinarum.
    Rodríguez-Romero A; Jiménez-Tenorio N; Basallote MD; De Orte MR; Blasco J; Riba I
    Environ Sci Technol; 2014 Oct; 48(20):12292-301. PubMed ID: 25221911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of ocean acidification and a carbon dioxide capture and storage leak on the early life stages of the marine mussel Perna perna (Linneaus, 1758) and metal bioavailability.
    Szalaj D; De Orte MR; Goulding TA; Medeiros ID; DelValls TA; Cesar A
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):765-781. PubMed ID: 27752956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation through column leaching tests of metal release from contaminated estuarine sediment subject to CO₂ leakages from Carbon Capture and Storage sites.
    Payán MC; Galan B; Coz A; Vandecasteele C; Viguri JR
    Environ Pollut; 2012 Dec; 171():174-84. PubMed ID: 22926654
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coping with seawater acidification and the emerging contaminant diclofenac at the larval stage: A tale from the clam Ruditapes philippinarum.
    Munari M; Chemello G; Finos L; Ingrosso G; Giani M; Marin MG
    Chemosphere; 2016 Oct; 160():293-302. PubMed ID: 27391052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects on the mobility of metals from acidification caused by possible CO₂ leakage from sub-seabed geological formations.
    de Orte MR; Sarmiento AM; Basallote MD; Rodríguez-Romero A; Riba I; Delvalls A
    Sci Total Environ; 2014 Feb; 470-471():356-63. PubMed ID: 24144940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico.
    Pettit LR; Hart MB; Medina-Sánchez AN; Smart CW; Rodolfo-Metalpa R; Hall-Spencer JM; Prol-Ledesma RM
    Mar Pollut Bull; 2013 Aug; 73(2):452-62. PubMed ID: 23473095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptome of the bivalve Limecola balthica L. from Western Pacific: A new resource for studies of European populations.
    Yurchenko AA; Katolikova N; Polev D; Shcherbakova I; Strelkov P
    Mar Genomics; 2018 Jul; 40():58-63. PubMed ID: 29657123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genotoxic and cytotoxic effects of 50 Hz 1 mT electromagnetic field on larval rainbow trout (Oncorhynchus mykiss), Baltic clam (Limecola balthica) and common ragworm (Hediste diversicolor).
    Stankevičiūtė M; Jakubowska M; Pažusienė J; Makaras T; Otremba Z; Urban-Malinga B; Fey DP; Greszkiewicz M; Sauliutė G; Baršienė J; Andrulewicz E
    Aquat Toxicol; 2019 Mar; 208():109-117. PubMed ID: 30641415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.